Notes
![]() ![]() Notes - notes.io |
Our findings call for the development of mitochondria-targeted therapeutic approaches to limit neuropathology associated with SARS-CoV-2.Nanomaterials are the subject of a range of biomedical, commercial, and environmental investigations involving measurements in living cells and tissues. Accurate quantification of nanomaterials, at the tissue, cell, and organelle levels, is often difficult, however, in part due to their inhomogeneity. Here, we propose a method that uses the distinct optical properties of a heterogeneous nanomaterial preparation in order to improve quantification at the single-cell and organelle level. We developed "hyperspectral counting", which employs diffraction-limited imaging via hyperspectral microscopy of a diverse set of fluorescent nanomaterials to estimate particle number counts in live cells and subcellular structures. A mathematical model was developed, and Monte Carlo simulations were employed, to improve the accuracy of these estimates, enabling quantification with single-cell and single-endosome resolution. We applied this nanometrology technique with single-walled carbon nanotubes and identified an upper limit of the rate of uptake into cells─approximately 3,000 nanotubes endocytosed within 30 min. In contrast, conventional region-of-interest counting results in a 230% undercount. The method identified significant heterogeneity and a broad non-Gaussian distribution of carbon nanotube uptake within cells. For example, while a particular cell contained an average of 1 nanotube per endosome, the heterogeneous distribution resulted in over 7 nanotubes localizing within some endosomes, substantially changing the accounting of subcellular nanoparticle concentration distributions. This work presents a method to quantify the cellular and subcellular concentrations of a heterogeneous carbon nanotube reference material, with implications for the nanotoxicology, drug/gene delivery, and nanosensor fields.Electronic waste produced by plastic, toxic, and semiconducting components of existing electronic devices is dramatically increasing environmental pollution. To overcome these issues, the use of eco-friendly materials for designing such devices is attaining much attention. This current work presents a recycled material-based triboelectric nanogenerator (TENG) made of plastic waste and carbon-coated paper wipes (C@PWs), in which the PWs are also collected from a waste bin. The resultant C@PW-based TENG is then used for powering low-power electronic devices and, later, to generate a Morse code from a wearable for autonomous communication. In this application, the end users decode the Morse code from a customized LabVIEW program and read the transmitted signal. DNA inhibitor With further redesigning, a 9-segment keyboard is developed using nine-TENGs, connected to an Arduino controller to display the 9-segment actuation on a computer screen. Based on the above analysis, our C@PW-TENG device is expected to have an impact on future self-powered sensors and internet of things systems.Employing solid electrolytes (SEs) for lithium-ion batteries can boost the battery tolerance under abusive conditions and enable the implementation of bipolar cell stacking, leading to higher cell energy and power density as well as simplified thermal management. In this context, a bipolar solid-state battery (SSB) has received ever-increasing attention in recent years. However, poor solid-solid interfacial contact within the bipolar SSB deteriorates the battery power capability, representing a technical challenge for vehicle applications. In this work, a bipolar SSB pouch cell with two cell units connected in series is demonstrated without any short circuit or current leakage. With the assistance of an in-situ-formed nonflammable ionogel at particle-to-particle interfaces, the constructed bipolar cell manifests superior power capability and can meet the engineering cold crank requirements in 0, -10, and -18 °C environments. Furthermore, the excellent tolerance of the ionogel-introduced bipolar SSB under abusive conditions was proved by folding, cutting, and burning the cells. The above salient features suggested that the developed strategy herein holds promise to advance the next-generation high-performance SSBs.Here, we report on a universal carbothermal reduction strategy for the synthesis of well-dispersed WS2 nanoparticles (∼1.7 nm) supported on a N-doped carbon (NxC) nanostructure and the electrocatalytic activity toward oxygen reduction reaction (ORR). Bulk WS2 powder (2 μm) is the source for WS2 nanoparticles, and dicyandiamide is the source for NxC and carbothermal reduction. Interestingly, WS2/NxC serves the purpose of innovative and robust active sites for ORR through an efficient four-electron transfer process with excellent durability. Remarkably, WS2/NxC suppresses the peroxide generation due to the dominating inner-sphere electron transfer mechanism where the direct adsorption of the desolvated O2 molecule on the electroactive centers takes place. The mass activity (at 0.4 and 0.85 V vs RHE) of WS2/NxC outperforms the previously reported transition metal based electrocatalysts. The study further establishes a correlation between the work function and the ORR activity. We have also exploited WS2/NxC for electrochemical oxygen sensing, and there exists a direct correlation between oxygen sensing and ORR as both depend on the oxygen adsorption ability. Finally, the carbothermal reduction strategy has been extended for the synthesis of other TMDs/NxC such as MoS2/NxC, MoSe2/NxC, and WSe2/NxC.Gamma radiolysis behaviors and mechanisms of silica-filled o-cresol formaldehyde epoxy are studied at 2.20 × 10-5 to 1.95 × 10-1 Gy/s. The radiolysis-induced changes in chemical structures do not severely affect its thermostability. The slightly deteriorated mechanical strength at temperature exceeding 100 °C is accompanied by the declining glass transition temperature (from 185.9 to 172.2 °C) and enhanced damping ability. The gas yields of hydrogen, methane, and carbon dioxide manifest a remarkable dose rate effect. Based on the Schwarzschild law, their yields at an extremely low dose rate are accurately predicted by the established master curves. Besides, the latent radiolysis of gas products and postradiation effect are found with caution. The radiation-caused residual spin species are proved to be composed of silica defects and a phenoxy-type free radical with a tert-butyl group, according to the experimental results, theoretical calculations, and spectra simulations. The lower vertical ionization potential (7.6 eV) and adiabatic ionization potential (7.1 eV) are primarily due to the ionization of the benzene ring moiety with the tert-butyl group, which is likely to suffer from radiolysis. The calculated bond dissociation energy (260.8-563.5 kJ/mol) of the typical chemical bonds of epoxy is consistent with its radiolytic vulnerability and degradation mechanisms.Searching for quantum spin Hall insulators with large fully opened energy gap to overcome the thermal disturbance at room temperature has attracted tremendous attention because of the robustness of one-dimensional (1D) spin-momentum locked topological edge states in the practical applications of electronic devices and spintronics. Here, we report the investigation of topological nature of monolayer Bi4Br4 by the techniques of angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. The possible topological nontriviality of 1D edge state integrals within the large energy gap (∼0.2 eV) is revealed by the first-principle calculations. The ARPES measurements at different temperatures show a temperature-induced Lifshitz transition, corresponding to the resistivity anomaly evoked by the chemical potential shift. The connection between the emergency of superconductivity and the Lifshitz transition is discussed.(S)-(2-Methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) was recently developed as a novel class of selective and reversible monoamine oxidase-B (MAO-B) tracers for in vivo imaging of reactive astrogliosis via positron emission tomography. To investigate the effect of the chirality of [18F]SMBT-1 on tracer performance, we synthesized (S)-[18F]6 ([18F]SMBT-1) and (R)-[18F]6 and compared their binding properties, pharmacokinetics, and metabolism. (S)-6 showed higher binding affinity to MAO-B and lower binding affinity to MAO-A than (R)-6, demonstrating a higher selectivity ratio (MAO-B/MAO-A). A pharmacokinetic study in mice demonstrated that both (S)-[18F]6 and (R)-[18F]6 showed sufficient initial brain uptake. However, (S)-[18F]6 was cleared significantly faster from the body. An abundant sulfoconjugate metabolite M2 was observed in plasma for (S)-[18F]6 but not for (R)-[18F]6. In vitro sulfation assays confirmed that (S)-6 was more reactive than (R)-6, consistent with the in vivo findings. Mefenamic acid, a selective sulfotransferase 1A1 (SULT1A1) inhibitor, strongly inhibited the in vitro sulfation of (S)-6 by mouse liver fractions, human liver cytosol fractions, and human recombinant SULT1A1 enzyme. Genetic polymorphisms of SULT1A1 did not affect the sulfation of (S)-6 in vitro. In conclusion, (S)-[18F]6 had a more favorable binding affinity and binding selectivity for MAO-B than (R)-[18F]6. Additionally, (S)-[18F]6 also possessed better pharmacological and metabolic properties than (R)-[18F]6. These results suggest that (S)-[18F]6 ([18F]SMBT-1) is a promising candidate for application in the imaging of MAO-B in vivo.In recent times, organelle-targeted drug delivery systems have gained tremendous attention due to the site-specific delivery of active drug molecules, resulting in enhanced bioefficacy. In this context, a phototriggered drug delivery system (DDS) for releasing an active molecule is superior, as it provides spatial and temporal control over the release. So far, a near-infrared (NIR) light-responsive organelle-targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR light-responsive lysosome-targeted "AIE + ESIPT" active single-component DDS based on the naphthalene chromophore. The two-photon absorption cross section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single-component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of drug release.The tribochemistry and transfer film formation at the metal/polymer interface plays an essential role in surface protection, wear reduction, and lubrication. Although the topic has been studied for decades, challenges persist in clarifying the nanoscale mechanism and dynamic evolution of tribochemical reactions. To investigate the tribochemistry between iron and polytetrafluoroethylene (PTFE) in ambient and cryogenic environments, we have trained and expanded a ReaxFF reactive force field to describe iron-oxygen-water-PTFE systems (C/H/O/F/Fe). Using ReaxFF molecular dynamics simulations, we find that mechanical shearing of single asperity induced the degradation of PTFE molecules and radicals, showing subsequent oxidation and hydroxylation reactions of the radicals initiated by C-C bond cleavage, in agreement with previous experimental observations. Furthermore, we studied mechanisms of interfacial tribochemical reactions and formation of transfer films. We found that tribochemical wear and Fe-C and Fe-F bonding networks are important mechanisms for anchoring molecular chains to form a transfer film on the iron countersurface.
Here's my website: https://www.selleckchem.com/products/rk-33.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team