Notes
![]() ![]() Notes - notes.io |
Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1β-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1β and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.The blockage of transient receptor potential vanilloid 4 (TRPV4) inhibits inflammation and reduces hippocampal neuronal injury in a pilocarpine-induced mouse model of temporal lobe epilepsy. However, the underlying mechanisms remain largely unclear. NF-κB signaling pathway is responsible for the inflammation and neuronal injury during epilepsy. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. Therefore, TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. We conclude that blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the anti-inflammatory response and neuroprotective ability of TRPV4 blockage in mice with PISE.Alzheimer's disease (AD) is characterized by the increase of hippocampal Ca2+ influx-induced apoptosis and mitochondrial oxidative stress (OS). The OS is a stimulator of TRPM2, although N-(p-amylcinnamoyl)anthranilic acid (ACA), 2-aminoethyl diphenylborinate (2/APB), and glutathione (GSH) are non-specific antagonists of TRPM2. In the present study, we investigated the protective roles of GSH and TRPM2 antagonist treatments on the amyloid β42 peptide (Aβ)-caused oxidative neurotoxicity and apoptosis in the hippocampus of mice with AD model. After the isolation of hippocampal neurons from the newborn mice, they were divided into five incubation groups as follows control, ACA, Aβ, Aβ+ACA, and Aβ+GSH. The levels of apoptosis, hippocampus death, cytosolic ROS, cytosolic Zn2+, mitochondrial ROS, caspase-3, caspase-9, lipid peroxidation, and cytosolic Ca2+ were increased in the primary hippocampus cultures by treatments of Aβ, although their levels were decreased in the neurons by the treatments of GSH, PARP-1 inhibhe Aβ incubation-mediated TRPM2 stimulation increases the concentration of cytosolic-free Ca2+ and Zn2+ in the hippocampus. In turn, the increased concentration causes the increase of mitochondrial membrane potential (ΔΨm), which causes the excessive generations of mitochondria ROS and the decrease of cytosolic GSH and GSH peroxidase (GSH-Px). The ROS production and GSH depletion are two main causes in the neurobiology of Alzheimer's disease. However, the effect of Aβ was not shown in the hippocampus of TRPM2-knockout mice. The Aβ and TRPM2 stimulation-caused overload Ca2+ entry cause apoptosis and cell death via the activations of caspase-3 (Casp/3) and caspase-9 (Casp/9) in the hippocampus. The actions of Aβ-induced oxidative toxicity were modulated in the primary hippocampus by the incubations of ACA, GSH, 2/APB, and PARP-1 inhibitors (PJ34 and DPQ). (↑) Increase. (↓) Decrease.The sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. 'Local Ca2+ release' (LCR), a unique cellular activity, acts as the 'engine' of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. JAK pathway Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.Non-small cell lung cancer (NSCLC) has high rates of morbidity and mortality. E3 ubiquitin ligase usually has antitumor effects. This study evaluated the mechanism of E3 ligase FBXW7 (F-box and WD repeat domain containing 7) in the radiosensitivity of NSCLC. NCI-H1299 and NCI-H1299R cells were irradiated by 0, 2, 4, and 6 Gy doses of X-ray, respectively. In addition to the measurement of cell proliferation, apoptosis, and γ-H2AX, FBXW7 expression was measured and the interaction between FBXW7 and SOX9 (SRY-box transcription factor 9) was evaluated. Ubiquitination level and protein stability of SOX9 were examined after FBXW7 overexpression. The binding relationship between SOX9 and CDKN1A (cyclin-dependent kinase inhibitor 1A) was verified. Xenograft tumor model was established to evaluate the effect of FBXW7 on radiosensitivity in vivo. FBXW7 was under-expressed in radioresistant cells. Overexpression of FBXW7 repressed NCI-H1299 and NCI-H1299R cell proliferation and colony formation and increased γ-H2AX-positive foci. Overexpression of FBXW7 increased the ubiquitination level and reduced the protein stability of SOX9. SOX9 bound to the CDKN1A promoter to inhibit CDKN1A expression. FBXW7 inhibited tumorigenesis and apoptosis and enhanced radiosensitivity of NSCLC cells in vivo via the SOX9/CDKN1A axis. Overall, FBXW7 inhibited SOX9 expression by promoting SOX9 ubiquitination and proteasome degradation, suppressing the binding of SOX9 to CDKN1A, and upregulating CDKN1A, thereby improving the radiosensitivity of NSCLC cells.Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function. To explore any photoisomerizable lipids in the eyes, the nonirradiated and sunlight-irradiated eyeball extracts were subjected to liquid chromatography-mass spectrometry analysis, followed by the identification of the decreased lipid species in the irradiated extracts. Surprisingly, more than nine hundred lipid species were decreased in the irradiated extracts. Three lipid species, coenzyme Q10 (CoQ10), triglyceride(584), and coenzyme Q9, were decreased both significantly (p less then 0.05) and by more than two-fold, where CoQ10 showed the most significant decrease. Later, photoisomerization was identified as the prominent cause underlying the decrease of CoQ10. Interestingly, CoQ10 in the sunlight-irradiated fresh eyeballs was also isomerized. Both the visible light and ultraviolet radiation were capable of producing CoQ10 isomer, while the latter showed rapid action. This study is believed to enhance our understanding of the biochemistry and photodamage of the eye and can potentially contribute to the advancement of opto-lipidomics.Poria cocos, a famous traditional Chinese medicine and a well-known food or food supplement, has shown therapeutic potential against cancer and the uneasiness of the mind. In addition, polysaccharides (PCPs) in this fungus were found to be various bioactive. In this work, one such PCP, PCP-1, extracted by deep eutectic solvent (DES) and separated using Sephadex G-15 columns, was characterized using GC-MS, HPGPC, FT-IR, and NMR, while also tested for physicochemical properties. Results indicated that PCP-1 contained 96.89 ± 3.21% total sugars and was a glucan with molecular weight of 3.2 kD. The main glycosidic linkage was 1,3-linked Glcp with 96.82 mol% content and a triple helix structure, and β-D-Glcp-(1 → linkage connected to the main chain through an O-6 atom was the backbone structure. In terms of the physicochemical property, PCP-1 was soluble in water, but not in organic solvent, and processed a relative high water-holding capacity (8.64 ± 0.14 g/g) and low oil-holding capacity (2.52 ± 0.21 g/g). In addition, in vitro, PCP-1 was found to have the ability of scavenging DPPH, hydroxyl free radical, superoxide anion radical and reducing ferric at different levels. This research would be useful for the further application of PCP-1.The rising tide of non-alcoholic fatty liver disease (NAFLD) associated with the obesity epidemic is a major health concern worldwide. NAFLD - specifically its more advanced form, non-alcoholic steatohepatitis (NASH)-related cirrhosis - is now the fastest growing indication for liver transplantation in the USA and Europe. Although the short-term and mid-term overall survival rates of patients who receive a liver transplant for NASH-related cirrhosis are essentially similar to those of patients who receive a transplant for other liver indications, recipients with NASH-related cirrhosis have an increased risk of waiting-list mortality and of developing recurrent liver disease and cardiometabolic complications in the longer term after liver transplantation. This Review provides a brief overview of the epidemiology of NAFLD and NASH and the occurrence of NAFLD or NASH in patients after liver transplantation for NASH and other liver indications. It also discusses the putative metabolic mechanisms underlying the emergence of NAFLD or NASH after liver transplantation as well as optimal therapeutic approaches for recipients of liver transplants, including the management of cardiometabolic comorbidities, tailored immunosuppression, lifestyle changes and pharmacotherapy for NAFLD.
Here's my website: https://www.selleckchem.com/JAK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team