Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We recorded neural activity in male monkeys playing a variant of the game 'chicken' in which they made decisions to cooperate or not cooperate to obtain rewards of different sizes. check details Neurons in the middle superior temporal sulcus (mSTS)-previously implicated in social perception-signaled strategic information, including payoffs, intentions of the other player, reward outcomes and predictions about the other player. Moreover, a subpopulation of mSTS neurons selectively signaled cooperatively obtained rewards. Neurons in the anterior cingulate gyrus, previously implicated in vicarious reinforcement and empathy, carried less information about strategic variables, especially cooperative reward. Strategic signals were not reducible to perceptual information about the other player or motor contingencies. These findings suggest that the capacity to compute models of other agents has deep roots in the strategic social behavior of primates and that the anterior cingulate gyrus and the mSTS support these computations.Sensory pathways are typically studied by starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analyses of activity toward the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of ongoing movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.The ten-eleven translocation 2 (TET2) protein, which oxidizes 5-methylcytosine in DNA, can also bind RNA; however, the targets and function of TET2-RNA interactions in vivo are not fully understood. Using stringent affinity tags introduced at the Tet2 locus, we purified and sequenced TET2-crosslinked RNAs from mouse embryonic stem cells (mESCs) and found a high enrichment for tRNAs. RNA immunoprecipitation with an antibody against 5-hydroxymethylcytosine (hm5C) recovered tRNAs that overlapped with those bound to TET2 in cells. Mass spectrometry (MS) analyses revealed that TET2 is necessary and sufficient for the deposition of the hm5C modification on tRNA. Tet2 knockout in mESCs affected the levels of several small noncoding RNAs originating from TET2-bound tRNAs that were enriched by hm5C immunoprecipitation. Thus, our results suggest a new function of TET2 in promoting the conversion of 5-methylcytosine to hm5C on tRNA and regulating the processing or stability of different classes of tRNA fragments.Intrinsically disordered proteins (IDPs) are ubiquitous proteins that are disordered entirely or partly and play important roles in diverse biological phenomena. Their structure dynamically samples a multitude of conformational states, thus rendering their structural analysis very difficult. Here we explore the potential of high-speed atomic force microscopy (HS-AFM) for characterizing the structure and dynamics of IDPs. Successive HS-AFM images of an IDP molecule can not only identify constantly folded and constantly disordered regions in the molecule, but can also document disorder-to-order transitions. Moreover, the number of amino acids contained in these disordered regions can be roughly estimated, enabling a semiquantitative, realistic description of the dynamic structure of IDPs.Nanostructured materials of diverse architecture are ubiquitous in industrial catalysis. They offer exciting prospects to tackle various sustainability challenges faced by society. Since the introduction of the concept a century ago, researchers aspire to control the chemical identity, local environment and electronic properties of active sites on catalytic surfaces to optimize their reactivity in given applications. Nowadays, numerous strategies exist to tailor these characteristics with varying levels of atomic precision. Making headway relies upon the existence of analytical approaches able to resolve relevant structural features and remains challenging due to the inherent complexity even of the simplest heterogeneous catalysts, and to dynamic effects often occurring under reaction conditions. Computational methods play a complementary and ever-increasing role in pushing forward the design. Here, we examine how nanoscale engineering can enhance the selectivity and stability of catalysts. We highlight breakthroughs towards their commercialization and identify directions to guide future research and innovation.Lithium-sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li-S pouch cells are significantly limited by the use of thin sulfur electrodes, flooded electrolytes and Li metal degradation. Here we propose a cathode design concept to achieve good Li-S pouch cell performances. The cathode is composed of uniformly embedded ZnS nanoparticles and Co-N-C single-atom catalyst to form double-end binding sites inside a highly oriented macroporous host, which can effectively immobilize and catalytically convert polysulfide intermediates during cycling, thus eliminating the shuttle effect and lithium metal corrosion. The ordered macropores enhance ionic transport under high sulfur loading by forming sufficient triple-phase boundaries between catalyst, conductive support and electrolyte. This design prevents the formation of inactive sulfur (dead sulfur). Our cathode structure shows improved performances in a pouch cell configuration under high sulfur loading and lean electrolyte operation. A 1-A-h-level pouch cell with only 100% lithium excess can deliver a cell specific energy of >300 W h kg-1 with a Coulombic efficiency >95% for 80 cycles.Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.C4 photosynthesis evolved repeatedly from the ancestral C3 state, improving photosynthetic efficiency by ~50%. In most C4 lineages, photosynthesis is compartmented between mesophyll and bundle sheath cells, but how gene expression is restricted to these cell types is poorly understood. Using the C3 model Arabidopsis thaliana, we identified cis-elements and transcription factors driving expression in bundle sheath strands. Upstream of the bundle sheath preferentially expressed MYB76 gene, we identified a region necessary and sufficient for expression containing two cis-elements associated with the MYC and MYB families of transcription factors. MYB76 expression is reduced in mutant alleles for these transcription factors. link2 Moreover, downregulated genes shared by both mutants are preferentially expressed in the bundle sheath. Our findings are broadly relevant for understanding the spatial patterning of gene expression, provide specific insights into mechanisms associated with the evolution of C4 photosynthesis and identify a short tuneable sequence for manipulating gene expression in the bundle sheath.
Distribution and activity of ghrelin cells in the stomach of obese subjects are controversial.
We examined samples from stomachs removed by sleeve gastrectomy in 49 obese subjects (normoglycemic, hyperglycemic and diabetic) and quantified the density of ghrelin/chromogranin endocrine cells by immunohistochemistry. Data were compared with those from 13 lean subjects evaluated by gastroscopy. In 44 cases (11 controls and 33 obese patients) a gene expression analysis of ghrelin and its activating enzyme ghrelin O-acyl transferase (GOAT) was performed. link3 In 21 cases (4 controls and 17 obese patients) the protein levels of unacylated and acylated-ghrelin were measured by ELISA tests. In 18 cases (4 controls and 14 obese patients) the morphology of ghrelin-producing cells was evaluated by electron microscopy.
The obese group, either considered as total population or divided into subgroups, did not show any significant difference in ghrelin cell density when compared with control subjects. Inter-glandular smoothn secretion of ghrelin, these results suggest a possible role for gastric ghrelin overproduction in the complex architecture that takes part in the pathogenesis of type 2 diabetes.Genotype-first approach allows to systematically identify carriers of pathogenic variants in BRCA1/2 genes conferring a high risk of familial breast and ovarian cancer. Participants of the Estonian biobank have expressed support for the disclosure of clinically significant findings. With an Estonian biobank cohort, we applied a genotype-first approach, contacted carriers, and offered return of results with genetic counseling. We evaluated participants' responses to and the clinical utility of the reporting of actionable genetic findings. Twenty-two of 40 contacted carriers of 17 pathogenic BRCA1/2 variants responded and chose to receive results. Eight of these 22 participants qualified for high-risk assessment based on National Comprehensive Cancer Network criteria. Twenty of 21 counseled participants appreciated being contacted. Relatives of 10 participants underwent cascade screening. Five of 16 eligible female BRCA1/2 variant carriers chose to undergo risk-reducing surgery, and 10 adhered to surveillance recommendations over the 30-month follow-up period. We recommend the return of results to population-based biobank participants; this approach could be viewed as a model for population-wide genetic testing. The genotype-first approach permits the identification of individuals at high risk who would not be identified by application of an approach based on personal and family histories only.
My Website: https://www.selleckchem.com/products/tas-120.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team