Notes
Notes - notes.io |
COVID-19 potentially threatens the lives and livelihood of people all over the world. The disease is presently a major health concern in Ghana and the rest of the world. Although, human to human transmission dynamics has been established, not much research is done on the dynamics of the virus in the environment and the role human play by releasing the virus into the environment. Therefore, investigating the human-environment-human by use of mathematical analysis and optimal control theory is relatively necessary. The dynamics of COVID-19 for this study is segregated into compartments as Susceptible (S), Exposed (E), Asymptomatic (A), Symptomatic (I), Recovered (R) and the Virus in the environment/surfaces (V). The basic reproduction number R 0 without controls is computed. The application of Lyapunov's function is used to analyse the global stability of the proposed model. We fit the model to real data from Ghana in the time window 12th March 2020 to 7th May 2020, with the aid of python programming language uve strategy among all the six control intervention strategies under consideration.Different countries - and sometimes different regions within the same countries - have adopted different strategies in trying to contain the ongoing COVID-19 epidemic; these mix in variable parts social confinement, early detection and contact tracing. In this paper we discuss the different effects of these ingredients on the epidemic dynamics; the discussion is conducted with the help of two simple models, i.e. the classical SIR model and the recently introduced variant A-SIR (arXiv2003.08720) which takes into account the presence of a large set of asymptomatic infectives.The novel coronavirus disease 2019 (COVID-19), detected in Wuhan City, Hubei Province, China in late December 2019, is rapidly spreading and affecting all countries in the world. Real-time reverse transcription-polymerase chain reaction (RT-PCR) test has been described by the World Health Organization (WHO) as the standard test method for the diagnosis of the disease. However, considering that the results of this test are obtained between a few hours and two days, it is very important to apply another diagnostic method as an alternative to this test. selleck kinase inhibitor The fact that RT-PCR test kits are limited in number, the test results are obtained in a long time, and the high probability of healthcare personnel becoming infected with the disease during the test, necessitates the use of other diagnostic methods as an alternative to these test kits. In this study, a hybrid model consisting of two-dimensional (2D) curvelet transformation, chaotic salp swarm algorithm (CSSA) and deep learning technique is developed in order to determine the patient infected with coronavirus pneumonia from X-ray images. In the proposed model, 2D Curvelet transformation is applied to the images obtained from the patient's chest X-ray radiographs and a feature matrix is formed using the obtained coefficients. The coefficients in the feature matrix are optimized with the help of the CSSA and COVID-19 disease is diagnosed by the EfficientNet-B0 model, which is one of the deep learning methods. Experimental results show that the proposed hybrid model can diagnose COVID-19 disease with high accuracy from chest X-ray images.This paper investigates the exact traveling wave solutions of the fractional model of the human immunodeficiency virus (HIV-1) infection for CD4 + T-cells. This model also treats with the effect of antiviral drug therapy. These solutions calculate both the boundary and initial conditions that allow employing the septic-B-spline scheme which is one of the most recent schemes in the numerical field. We use the obtained computational solutions via the modified Khater, the extended simplest equation, and sech-tanh methods through Atangana-Baleanu derivative operator. The comparison between the exact and numerical evaluated solutions is illustrated by some distinct sketches. The functioning of our numerical method is tested under three computational obtained solutions.In this article, we propose the Susceptible-Unidentified infected-Confirmed (SUC) epidemic model for estimating the unidentified infected population for coronavirus disease 2019 (COVID-19) in China. The unidentified infected population means the infected but not identified people. They are not yet hospitalized and still can spread the disease to the susceptible. To estimate the unidentified infected population, we find the optimal model parameters which best fit the confirmed case data in the least-squares sense. Here, we use the time series data of the confirmed cases in China reported by World Health Organization. In addition, we perform the practical identifiability analysis of the proposed model using the Monte Carlo simulation. The proposed model is simple but potentially useful in estimating the unidentified infected population to monitor the effectiveness of interventions and to prepare the quantity of protective masks or COVID-19 diagnostic kit to supply, hospital beds, medical staffs, and so on. Therefore, to control the spread of the infectious disease, it is essential to estimate the number of the unidentified infected population. The proposed SUC model can be used as a basic building block mathematical equation for estimating unidentified infected population.The COVID-19 pandemic due to the SARS-CoV-2 coronavirus has directly impacted the public health and economy worldwide. To overcome this problem, countries have adopted different policies and non-pharmaceutical interventions for controlling the spread of the virus. This paper proposes the COVID-ABS, a new SEIR (Susceptible-Exposed-Infected-Recovered) agent-based model that aims to simulate the pandemic dynamics using a society of agents emulating people, business and government. Seven different scenarios of social distancing interventions were analyzed, with varying epidemiological and economic effects (1) do nothing, (2) lockdown, (3) conditional lockdown, (4) vertical isolation, (5) partial isolation, (6) use of face masks, and (7) use of face masks together with 50% of adhesion to social isolation. In the impossibility of implementing scenarios with lockdown, which present the lowest number of deaths and highest impact on the economy, scenarios combining the use of face masks and partial isolation can be the more realistic for implementation in terms of social cooperation.
Here's my website: https://www.selleckchem.com/products/simnotrelvir.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team