Notes
Notes - notes.io |
t of CRPC, which had a limited role in CRPC cell proliferation. Further investigation is required to clarify the roles of AR other splice variants and AR-V7 in CRPC.Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer. Chronically unresolved inflammation may remodel the immunosuppressive tumor microenvironment, which is rich in innate immune cells. The mechanisms via which HCC progresses through the evasion of the innate immune surveillance remain unclear. The present study thus aimed to identify key genes involved in HCC immunosuppression and to establish an innate immune risk signature, with the ultimate goal of obtaining new insight into effective immunotherapies. HCC and normal liver tissue mRNA expression and clinicopathological data were obtained from the Cancer Genome Atlas database. The immunosuppressive innate immune-related genes (IIRGs) in HCC were screened using integrated bioinformatics analyses. Gene expression was then validated using the Gene Expression Omnibus database and the Human Protein Atlas database, and tissues were obtained from patients with HCC who underwent surgery. In total, 3,676 genes were identified as differentially exprclusively, a novel innate immune-related risk signature for patients with HCC was constructed and validated. This signature may be involved in immunosuppression, and may be used to predict a poor prognosis, functioning as a potential immunotherapeutic target for patients with HCC.Uromodulin (UMOD) is a glycoprotein that is selectively expressed on the epithelial cells of the thick ascending limb of Henle's loop and the early distal renal tubule. The present study aimed to investigate whether UMOD was associated with complement activation in patients with renal diseases. In addition, its biological function was examined in vitro. The expression levels of UMOD and complement components, including C1q, C3, C4 and C3a, and membrane attack complex (MAC) in the plasma of patients with IgA nephropathy (IgAN; n=58) and lupus nephritis (LN; n=36) were detected using ELISA, which was used to determine the association between UMOD expression and complement components. selleck inhibitor In addition, a simulated hypoxia-reoxygenation (H/R) model was used to stimulate UMOD expression in mouse inner medullary collecting duct cells. Additionally, the association between UMOD expression and complement components C1q and C3d at the cellular level was identified using western blotting and immunofluorescence, respectivelyection by inhibiting complement activation in renal disease.Nucleus accumbens-associated protein 1 (NACC1) has been reported to serve as an oncogenic role in several types of cancer; however, its role in nasopharyngeal carcinoma (NPC) remains to be determined. The present study aimed to investigate the role of NACC1 in NPC and elucidate the underlying mechanisms. Therefore, NACC1 expression in the normal nasopharyngeal epithelial cell line, NP69, and various NPC cell lines was determined by reverse transcription-quantitative PCR and western blot analyses. NACC1 expression was silenced in the NPC SUNE-1 cell line by transfection with a short hairpin RNA. Cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were then evaluated using MTT, colony formation, wound healing, Transwell and western blot assays, respectively. SC79 was employed to activate AKT expression in NACC1-silenced SUNE-1 cells, and the aforementioned cellular processes were observed. The results revealed that NACC1 expression was upregulated in NPC cell lines. NACC1-knocdown inhibited SUNE-1 cell proliferation, migration, invasion and EMT. Moreover, the levels of phosphorylated AKT and mTOR were decreased upon NACC1 silencing. Mechanistically, the presence of SC79 significantly blocked all the effects of NACC1-knockdown on SUNE-1 cells. The findings of the present study demonstrated that NACC1-knockdown effectively suppressed NPC cell proliferation, migration and invasion by inhibiting the activation of the AKT/mTOR signaling pathway. NACC1 may thus serve as a potential target for the diagnosis and therapy of NPC.Melanomas are highly malignant tumors that readily metastasize and have poor prognosis. Targeted therapy is a cornerstone of treatment for patients with melanoma. Although c-Kit gene aberration has found in 5-10% of melanoma cases, research on c-Kit inhibitors for melanoma with c-Kit aberration have been disappointing. Sorafenib is a tyrosine kinase inhibitor, whose targets include c-Kit, platelet derived growth factor receptor (PDGFR), VEGFR and RAF. The present study aimed to examine the effect of sorafenib on metastatic melanoma with c-Kit aberration. Cell viability was assessed via trypan blue assay. Migration and invasion were analyzed using cell culture inserts. The anti-metastatic effects and antitumour activity of sorafenib were determined in an in vivo model. Protein expression was detected via western blotting, and the expression of MMP and very late antigen (VLA) was detected via reverse transcription-quantitative PCR. It was identified that sorafenib decreased cell viability, migration and invasion in vitro. Furthermore, sorafenib inhibited metastasis and tumor growth in vivo. Mechanistically, sorafenib inhibited c-Kit, PDGFR, VEGFR, B-Raf and c-Raf phosphorylation both in vitro and in vivo. In addition, sorafenib reduced the expression levels of MMPs and VLA. Importantly, there was a significant effect of sorafenib treatment on overall survival in mice. Collectively, this study suggests that sorafenib may serve as a novel therapeutic option for melanoma with c-Kit dysregulation.Exosomes are membrane vesicles with a diameter of 30-150 nm. Exosomes are secreted by various types of tumor cell and contain a variety of proteins, circular RNAs (circRNAs), microRNAs and DNA, depending on the host cells. Among them, circRNAs, which are long non-coding endogenous RNAs, form covalently closed and continuous loops that link the 3' and 5' terminals generated by back-splicing. circRNAs have become a hotspot of research. Exosomal circRNAs are in volved in the pathogenesis of cancer, especially metastasis, which is mainly ascribed to the frequently abnormal expression levels within neoplasms. Nonetheless, the functions and regulatory mechanisms of exosomal circRNAs in the progression of digestive system tumors (DSTs) remain unclear. More knowledge on the regulation and network interactions of exosomal circRNAs will help identify superior treatment strategies for the metastasis of DSTs. The present review aims to summarize the existing studies on the functions and mechanisms of exosomal circRNAs in tumorigenesis, and evaluate the associations between the dysregulation of exosomal circRNAs and tumor metastasis.Previous studies have indicated that long non-coding RNA (lncRNA) down syndrome cell adhesion molecule antisense 1 (DSCAM-AS1) serves an oncogenic role in numerous cancer types. However, its role in endometrial cancer (EC) remains largely unknown. In the present study, DSCAM-AS1 expression levels in EC tissues and cells and their normal counterparts were analyzed using reverse transcription-quantitative. In vitro and in vivo experiments were conducted to validate the functions of DSCAM-AS1 in EC. It was revealed that DSCAM-AS1 was expressed at a high level in EC tissues and cells after analyzing patient data and data obtained from The Cancer Genome Atlas. Notably, it was also revealed that high DSCAM-AS1 expression was associated with a less favorable overall survival in patients with EC. Knockdown of DSCAM-AS1 was able to suppress EC cell proliferation by upregulating cell apoptosis in vitro. Furthermore, it was revealed that DSCAM-AS1 acted as a microRNA (miR)-136-5p sponge to exert its oncogenic roles in EC. Collectively and to the best of our knowledge, the current results provided first evidence that DSCAM-AS1 stimulated EC progression by regulating miR-136-5p, which may improve the understanding of the roles of ncRNAs in EC, and may help identify novel targets for anticancer treatment.Gastric cancer is a common tumor of the digestive system, which can occur in any part of the stomach. Kallikrein 6 (KLK6) is a trypsin-like serine protease and has been found to be involved in extracellular matrix remodeling, tumor invasion and nervous system plasticity. Our previous study reported that KLK6 suppressed HGC-27 gastric cancer cell growth by inhibiting epithelial-mesenchymal transition; however, the mechanism of action underlying the effect of KLK6 still remains unclear. The aim of the present study was to investigate the effect and the underlying mechanism of KLK6 on stem cell-like properties and metabolism in gastric carcinoma cells. The HGC-27 cell line was transfected with KLK6 overexpression (OV-KLK6) and interference (short hairpin-KLK6) vectors, then the transfection efficiency was confirmed using western blot analysis and reverse transcription-quantitative PCR. The percentage of CD133+ and CD44+ cells was detected using flow cytometry, while the protein expression levels of the stem-assoAKT and p-mTOR, and ATP content, lactic acid production, glucose uptake and gastric tumor volume were significantly decreased by sh-KLK6 (P less then 0.05), whereas KLK6 overexpression induced the opposite effect (P less then 0.05). In conclusion, KLK6 modulated stemness properties and cell metabolic profile in gastric carcinoma cells and the mechanism may be associated with the PI3K/AKT/mTOR signaling pathway.Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem or progenitor cells. It is important to identify molecules associated with the prognosis of AML and conduct an individual risk assessment for different patients. In the present study, the RNA expression profile of 132 patients with AML and 337 healthy individuals were downloaded from the University of California Santa Cruz Xena and the Genotype-Tissue Expression project databases. Differentially expressed mRNA (DEmRNA) transcripts between normal blood and AML blood were identified. Among these, prognosis-associated signature mRNA molecules were screened using univariate Cox and least absolute shrinkage and selection operator regression. A total of four genes, namely, family with sequence similarity 124 member B (FAM124B), 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), myeloperoxidase (MPO) and purinergic receptor P2Y1 (P2RY1), were identified using multivariate Cox regression analysis and were used to construct a prognostic scoring system. Moreover, the expression levels of HPDL and MPO were higher in the samples with high immunity scores and estimate scores (sum of stromal score and immune score), compared with those with low scores. Reverse transcription-quantitative PCR and western blot analysis were used to confirm the upregulation of the four candidate genes in AML cell lines as well as in clinical AML samples. In summary, the present study identified a novel mRNA-based prognostic risk scoring system for patients with AML. The four genes used in this scoring system may also play an important role in AML.Diffuse gastric carcinoma (DGC) is characterized by poorly cohesive cells, highly invasive growth patterns, poor prognosis and resistance to the majority of available systemic therapeutic strategies. It has been previously reported that the Wnt/β-catenin signaling pathway serves a prominent role in the tumorigenesis of gastric carcinoma. However, the mechanism underlying the dysregulation of this pathway in DGC has not been fully elucidated. Therefore, the present study aimed to investigate the expression profiles of Wnt antagonists, secreted frizzled-related protein 1 (SFRP1) and secreted frizzled-related protein 3 (SFRP3), and dishevelled protein family members, dishevelled segment polarity protein 2 (DVL2) and dishevelled segment polarity protein 3 (DVL3), in DGC tissues. The association between the expression levels of these factors and the clinicopathological parameters of the patients was determined. Protein and mRNA expression levels in 62 DGC tumor tissues and 62 normal gastric mucosal tissues obtained from patients with non-malignant disease were measured using immunohistochemical and reverse transcription-quantitative PCR (RT-qPCR) analysis.
Homepage: https://www.selleckchem.com/mTOR.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team