NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Polyethylenimine-Modified Mesoporous Silica Nanoparticles Induce the Tactical Procedure in Vascular Endothelial Cellular material via Microvesicle-Mediated Autophagosome Discharge.
Learning in nonstationary environments is one of the biggest challenges in machine learning. Nonstationarity can be caused by either task drift, i.e., the drift in the conditional distribution of labels given the input data, or the domain drift, i.e., the drift in the marginal distribution of the input data. This article aims to tackle this challenge with a modularized two-stream continual learning (CL) system, where the model is required to learn new tasks from a support stream and adapted to new domains in the query stream while maintaining previously learned knowledge. To deal with both drifts within and across the two streams, we propose a variational domain-agnostic feature replay-based approach that decouples the system into three modules an inference module that filters the input data from the two streams into domain-agnostic representations, a generative module that facilitates the high-level knowledge transfer, and a solver module that applies the filtered and transferable knowledge to solve the queries. We demonstrate the effectiveness of our proposed approach in addressing the two fundamental scenarios and complex scenarios in two-stream CL.This article proposes a virtual leader-based coordinated controller for the nonlinear multiple autonomous underwater vehicles (multi-AUVs) with the system uncertainties. To achieve the coordinated formation, a virtual AUV is set as the leader, while the desired command is designed using the relative position between each AUV and the virtual leader. Rituximab cost The controller is designed based on the back-stepping scheme, and the online data-based learning scheme is used for uncertainty approximation. The highlight is that compared with previous learning methods which mostly focus on stability, the learning performance index is constructed using the collected online data in this article. The index is further used in the composite update law of the neural weights. The closed-loop system stability is analyzed via the Lyapunov approach. The simulation test on the five AUVs under fixed formation shows that the proposed method can achieve higher tracking performance with improved approximation accuracy.Accurate prediction of clinical scores (of neuropsychological tests) based on noninvasive structural magnetic resonance imaging (MRI) helps understand the pathological stage of dementia (e.g., Alzheimer's disease (AD)) and forecast its progression. Existing machine/deep learning approaches typically preselect dementia-sensitive brain locations for MRI feature extraction and model construction, potentially leading to undesired heterogeneity between different stages and degraded prediction performance. Besides, these methods usually rely on prior anatomical knowledge (e.g., brain atlas) and time-consuming nonlinear registration for the preselection of brain locations, thereby ignoring individual-specific structural changes during dementia progression because all subjects share the same preselected brain regions. In this article, we propose a multi-task weakly-supervised attention network (MWAN) for the joint regression of multiple clinical scores from baseline MRI scans. Three sequential components are includedell retain individual specificities and are biologically meaningful.This paper studies the fundamental trade-offs between power transfer efficiency (PTE) and spectral efficiency that occur during simultaneous power and data transfer through near-field inductive links. A mathematical analysis is used to establish the relationship between PTE and channel capacity as a function of link parameters such as coupling coefficient ( k), load resistance, and surrounding environment. The analysis predicts that the optimum trade-off between power and data transfer is particularly dependent on k, which is a monotonically-decreasing function of axial distance ( d) between the coils. Real-time adaptation of the link parameters (such as load resistance and modulation type) is proposed to automatically optimize the power-data trade-off over a wide range of distances and coupling coefficients. A bench-top prototype of such an adaptive link is demonstrated at a center frequency of 13.56 MHz. The prototype uses an ultrasound transducer to measure d with accuracy mm, and uses this information to autonomously optimize both data rate (up to ∼ 50 Mbps) and PTE (up to ∼ 25%) as the coil-coil distance varies within the 4-15 mm range.With the advances in gene sequencing technologies, millions of somatic mutations have been reported in the past decades, but mining cancer driver genes with oncogenic mutations from these data remains a critical and challenging area of research. In this study, we proposed a network-based classification method for identifying cancer driver genes with merging the multi-biological information. In this method, we construct a cancer specific genetic network from the human protein-protein interactome to mine the network structure attributes, and combine biological information such as mutation frequency and differential expression of genes to achieve accurate prediction of cancer driver genes. Across seven different cancer types, the proposed algorithm always achieves high prediction accuracy, which is superior to the existing advanced methods. In the analysis of the predicted results, about 40% of the top 10 candidate genes overlap with the Cancer Gene Census database. Interestingly, the feature comparison indicates that the network based features are still more important than the biological features, including the mutation frequency and genetic differential expression. Further analyses also show that the integration of network structure attributes and biological information is valuable for predicting new cancer driver genes.With the rapid development of bioinformatics and the availability of genetic sequencing technologies, genomic data has been used to facilitate personalized medicine. Cloud computing, features as low cost, rich storage and rapid processing can precisely respond to the challenges brought by the emergence of massive genomic data. Considering the security of cloud platform and the privacy of genomic data, we firstly introduce P2GT which utilizes key-policy attribute-based encryption to realize genomic data access control with unbounded attributes, and employs equality test algorithm to achieve personalized medicine test by matching digitized single nucleotide polymorphisms (SNPs) directly on the users' ciphertext without encrypting multiple times. We then propose an enhanced scheme P2GT+, which adopts identity-based encryption with equality test supporting flexible joint authorization to realize privacy-preserving paternity test, genetic compatibility test and disease susceptibility test over the encrypted SNPs with P2GT.
Website: https://www.selleckchem.com/products/rituximab.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.