Notes
Notes - notes.io |
Consequently, in B. striata moderate PSII photoinhibition could protected PSI in FL at 42 °C. We conclude that, in addition to cyclic electron flow, WWC and PSII photoinhibition-repair cycle are two important strategies for preventing PSI photoinhibition in FL under moderate heat stress.Over 500 unique anthocyanins have been described to date, which vary in color, antioxidant, light-attenuating, and antimicrobial properties. Identification of anthocyanin chemical structure may therefore serve as an important clue to their in situ function in plants. We characterized the histological and chemical structures of anthocyanins associated with diverse leaf color patterns in the terrestrial orchid, Tipularia discolor, as a step towards understanding their ultimate function. Tipularia discolor produces a single wintergreen leaf in autumn, which is drab brown in color during expansion. Upper (adaxial) surfaces of fully-expanded leaves may be green, purple-spotted, or solid purple, while lower (abaxial) surfaces are bright magenta. Our results showed that the same three cyanidin 3,7,3'-triglucosides, in similar concentrations and proportions, accounted for coloration in each of these cases, and that different colors result from differences in histological location of anthocyanins (i.e. abaxial/adaxial epidermis, mesophyll). Anthocyanins with 3,7,3' linkage positions are rare in plants, occurring only within the orchid subfamily Epidendroideae, to which Tipularia belongs. These results are important to the discussion of anthocyanin structure-function because they serve as a reminder that 1) plants may employ the same anthocyanins in different anatomical locations to achieve a broad range of colors (and potentially adaptive functions), and 2) anthocyanin chemical structure and anatomical location are influenced by phylogenetic inertia, as well as natural selection.Typically, Na+/H+ antiporters (NHXs) possess a conserved N-terminus for cation binding and exchange and a hydrophilic C-terminus for regulating the antiporter activity. Plant endosomal-type NHXs play important roles in protein trafficking, as well as K+ and vesicle pH homeostasis, however the role of the C-terminal tail remains unclear. Here, the function of MnNHX6, an endosomal-type NHX in mulberry, was investigated using heterologous expression in yeast. Functional and localization analyses of C-terminal truncation and mutations in MnNHX6 revealed that the C-terminal conserved region was responsible for the function and stability of the protein and its hydrophobicity, which is a key domain requirement. Nuclear magnetic resonance spectroscopy provided direct structural evidence and yeast two-hybrid screening indicated that this functional domain was also necessary for interaction with sorting nexin 1. Our findings demonstrate that although the C-terminal tail of MnNHX6 is intrinsically disordered, the C-terminal conserved region may be an important part of the external mouth of this transporter, which controls protein function and stability by serving as an inter-molecular cork with a chain mechanism. These findings improve our understanding of the roles of the C-terminal tail of endosomal-type NHXs in plants and the ion transport mechanism of NHX-like antiporters.Metabolomics as a diagnosis tool for plant performance has shown good features for breeding and crop improvement. Additionally, due to limitations in land area and the increasing climate changes, breeding projects focusing on abiotic stress tolerance are becoming essential. DRB18 Nowadays no universal method is available to identify predictive metabolic markers. As a result, research aims must dictate the best method or combination of methods. To this end, we will introduce the key aspects to consider regarding growth scenarios and sampling strategies and discuss major analytical and data treatment approaches that are available to find metabolic markers of plant performance.Anthocyanin accumulation is a striking symptom of plant environmental response and plays an important role in plant adaptation to adverse stimuli. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a member of the PIFs family that directly interacts with light-activated phytochromes, and it can not only regulate various light responses but also optimize growth as a key integrator of multiple signaling pathways. However, the mechanism by which PIF4 participates in the regulation of anthocyanin accumulation remains to be elucidated. In this study, we found that anthocyanin accumulation was effectively induced by white light in Arabidopsis Col-0, but such an effect was impaired in the overexpression line PIF4OX. Consistently, the transcript level of PAP1 that encodes a key transcript factor involved in regulating anthocyanin biosynthesis was significantly decreased in PIF4OX compared with Col-0. Moreover, the expression of PAP1 was markedly lower in pap1-D/PIF4OX than pap1-D, as a result, the phenotype that highly accumon of PAP1 by directly binding to the G-box motif of the promoter.Sorbitol is the primary substrate translocated from source to sink in pear species. Among the many sorbitol transporters (SOTs), some are known to be involved in sorbitol accumulation in fruit; however, their particular roles are unclear. In this study, we examined the transcriptome and metabolome of a variety of pear samples from six time points to identify those SOTs. Similar to previous studies, sorbitol and sucrose differed significantly between the leaf and fruit, and sorbitol was consistently observed at higher concentrations at all time points. Interestingly, we found that sorbitol accumulation in pear fruit was cooperatively mediated by SOT3, SOT6/20, SOT19/21, and SOT22. In particular, the up-regulated SOT6/20 and SOT19/21 in fruit under 1 mg L-1 abscisic acid and 10 mg L-1 indole acetic acid treatments, respectively, resulted in an increased sorbitol concentration. In addition, sorbitol concentration showed positive correlations to fructose and glucose concentrations, indicating a role for sorbitol in the determination of fruit sweetness. Together with the deduced process of sugar biosynthesis, transport, conversion, and accumulation in pear, our study provides a foundation for further research into sugar accumulation processes in pear fruit, contributing to the improvement of fruit quality.The circadian clock is an endogenous timekeeper system that generates biological rhythms of approximately 24 h in most organisms. EARLY FLOWERING 3 (ELF3) and ELF4 were initially identified as negative regulators of flowering time in Arabidopsis thaliana. They were then found to play crucial roles in the circadian clock by integrating environmental light and ambient temperature signals and transmitting them to the central oscillator, thereby regulating various downstream cellular and physiological processes. At dusk, ELF3 acts as a scaffold, interacting with ELF4 and the transcription factor LUX ARRHYTHMO (PHYTOCLOCK1) to form an EVENING COMPLEX (EC). This complex represses the transcription of multiple circadian clock-related genes, thus inhibiting hypocotyl elongation and flowering. Subsequent studies have expanded knowledge about the regulatory roles of the EC in thermomorphogenesis and shade responses. In addition, ELF3 and ELF4 also form multiple complexes with other proteins including chromatin remodeling factors, histone deacetylase, and transcription factors, thus enabling the transcriptional repression of diverse targets. In this review, we summarize the recent advances in elucidating the regulatory mechanisms of ELF3 and ELF4 in plants and discuss directions for future research on ELF3 and ELF4.Chemical weed-control is the most effective practice for wheat, however, rapid evolution of herbicide-resistant weeds threat food-security and calls for integration of non-chemical practices. We hypothesis that integration of alternative GA-responsive dwarfing genes into elite wheat cultivars can promote early vigor and weed-competitiveness under Mediterranean climate. We develop near-isogenic lines of bread wheat cultivars with GAR dwarfing genes and evaluate them for early vigor and weed-competitiveness under various environmental and management conditions to identify promising NIL for weed-competitiveness and grain yield. While all seven NILs responded to external gibberellic acid application, they exhibited differences in early vigor. Greenhouse and field evaluations highlighted NIL OC1 (Rht8andRht12) as a promising line, with significant advantage in canopy early vigor over its parental. To facilitate accurate and continuous early vigor data collection, we applied non-destructive image-based phenotyping approaches which offers non-expensive and end-user friendly solution for selection. NIL OC1 was tested under different weed density level, infestation waves, and temperatures and highlight the complex genotypic × environmental × management interactions. Our findings demonstrate the potential of genetic modification of dwarfing genes as promising approach to improve weed-competitiveness, and serve as basis for future breeding efforts to support sustainable wheat production under semi-arid Mediterranean climate.Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.Hydrogen peroxide priming has emerged as a powerful strategy to trigger multiple responses involved in plant acclimation that reinforce tolerance to abiotic stresses, including salt stress. Thus, this study aimed to investigate the impact of foliar H2O2 priming on the physiological, biochemical, and ultrastructural traits related to photosynthesis of salt-stressed plants. Besides, we provided comparative leaf metabolomic profiles of Zea mays plants under such conditions. For this, H2O or H2O2 pretreated plants were grown under saline conditions for 12-days. Salinity drastically affected photosynthetic parameters and structural chloroplasts integrity, also increased reactive oxygen species contents promoting disturbance in the plant metabolism when compared to non-saline conditions. Our results suggest that H2O2-pretreated plants improved photosynthetic performance avoiding salinity-induced energy excess and ultrastructural damage by preserving stacking thylakoids. It displayed modulation of some metabolites, as arabitol, glucose, asparagine, and tyrosine, which may contribute to the maintenance of osmotic balance and reduced oxidative stress.
My Website: https://www.selleckchem.com/products/drb18.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team