NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Cytochrome P450 Isoforms inside the Metabolic process associated with Decursin along with Decursinol Angelate through Malay Angelica.
The findings have important environmental implications for the photo-transformation behavior of As(III) in natural surface waters containing dissolved organic matter, especially acidic waters.Sewage treatment is an important public service, but it consumes a lot of energy and chemicals in the process of removing wastewater pollutants, which may cause the risk of pollution transfer. To find the corresponding hot issues, this paper took the lead in integrating life cycle assessment (LCA) with life cycle costing (LCC) to evaluate four most typical sewage treatment technologies with more than 85% share in China. It is found that anaerobic/anoxic/oxic (AAO) was the optimal treatment scheme with relatively small potential environmental impact and economic load. The normalized results show that the trends of the four technologies on eleven environmental impact categories were basically the same. Marine aquatic ecotoxicity potential accounted for more than 70% of the overall environmental impact. Contribution analysis indicates that electricity and flocculant consumption were the main processes responsible for the environmental and economic burden. Overall, electricity consumption was the biggest hot spot. Sensitivity analysis verifies that a 10% reduction in electricity could bring high benefits to both the economy and the environment. These findings are expected to provide effective feedback on the operation and improvement of sewage treatment. Graphical abstract.The development of biofilms on modified natural zeolites was investigated with purpose to obtain biocomposites with biodegradation activity towards pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid) and glyphosate (N-(phosphonomethyl)glycine) for potential application in bioaugmentation of polluted agricultural soils. Microbial communities were selected from agricultural pesticide-contaminated soil/water samples and enriched on the basis of their ability to biodegrade the pesticides. selleck chemical In order to enhance affinity of microbial communities to the support material, the natural mineral zeolite was modified by nontoxic environmentally friendly cations (Li+, Na+, K+, NH4+, H+, Mg2+, Ca2+, Fe3+) by methods preserving its structure and characterised using powder XRD, surface area measurement and chemical composition analysis. Kinetics of pesticide degradation by the biocomposites was studied in liquid media. Results showed that according to zeolite modifications, the microbial activity and biodiversity changed. The best biodegradation rate of MCPA and glyphosate reached 0.12-0.13 mg/h with half-life of 16-18 h, which is considerably quicker than observed in natural environment. However, in some cases, biodegradation activity towards pesticides was lost which was connected to unfavourable zeolite modification and accumulation of toxic metabolites. High-throughput sequencing on the 16S rRNA genes of the biofilm communities highlighted the selection of bacteria genera known to metabolise MCPA (Aminobacter, Cupriavidus, Novosphingobium, Pseudomonas, Rhodococcus, Sphingobium and Sphingopyxis) and glyphosate (Pseudomonas). Altogether, results suggested that zeolites do not only have a passive role of biofilm support but also have protective and nutrient-supportive functions that consequently increase biodiversity of the pesticide degraders growing in the biofilm and influence the pesticide biodegradation rate.With the commercial nuclear technology rising in society nowadays, it is of paramount importance to remove uranium (VI) in radioactive wastewater through a cost-effective and efficient way. Due to simple operation, low cost and abundant adsorbents, the adsorption method has been widely used to treat the radioactive wastewater. However, unsatisfactory selectivity and potential secondary pollution of most adsorbents hamper their practical large-scale application. To overcome these limitations, an effective and green absorbent is developed by functionalizing the waste eggshell membrane (ESM) with carboxyl-rich agents. This design concept transfers waste ESM (or "trash") into a unique "treasure" absorbent for directly handling radioactive wastewater. The resultant ESM-COOH shows excellent adsorption selectivity toward uranium (VI) with the selectivity coefficient of 75%, exceeding a majority of reported adsorbents. Moreover, its adsorption capacity still maintains 84% of the initial value after six cycles, suggesting good reusability. These excellent features enable the ESM-COOH to adsorb uranium (VI) highly selectively and efficiently. This work offers a concept to transfer biological wastes into treasure for the mass remediation of water body.We studied the physio-biochemical involvement of exogenous signaling compounds, glutathione and putrescine (alone and in combination), on three contrasting genotypes (cvs. Shiralee, Rainbow, and Dunkled) of canola (Brassica napus L.) of plants exposed to chromium stress. Seeds were germinated in Cr-contaminated soil (0 and 50 μg/g Cr6+), and both signaling compounds were applied as a foliar spray to 20-day-old plants. Changes in root, stem, and leaf nitro-oxidative metabolism, endogenous GSH level, secondary metabolites, and mineral nutrients were investigated from 60-day-old plants. Exposure to Cr6+ increased stem GSH and NO concentrations in all cultivars. Maximum root Cr6+ bioaccumulation was recorded in cv. Rainbow and the least in cv. Shiralee. Also, Cr6+ stress decreased number and weight of seeds and pod length. Disturbances in root and shoot mineral profile were evident; however, its magnitude varied in all cultivars. The exogenous GSH improved root and shoot P, Fe, S, and Zn concentrations; however, the effect was cultivar specific. Leaf endogenous GSH was increased by exogenous GSH while NO levels remained unaffected. The GSH application also promoted shoot Cr6+ bioaccumulation while PUT application caused a recovery in seed number and seed weight. Both PUT and GSH differentially affected tissue-specific secondary metabolite profile. Overall, the exogenous GSH was much more effective in alleviating the Cr+6 toxicity in canola.Desulfurization of liquid fuels mitigates the amount of noxious sulfur oxides and particulates released during fuel combustion. Existing literature on oxidative-adsorptive desulfurization technologies focus on sulfur-in-fuel removal by various materials, but very little information is presented about their desorption kinetics and thermodynamics. Herein, we report for the first time, the mechanism of sulfur desorption from neutral activated alumina saturated with dibenzothiophene sulfone. Batch experiments were conducted to examine the effects of agitation rate, desorption temperature, sulfur content, and eluent type on sulfur desorption efficiencies. Results show enhanced desorption capacities at higher agitation rate, desorption temperature, and initial sulfur content. Desorption efficiency and capacity of acetone were found to be remarkably superior to ethanol, acetoneethanol (11), and acetoneisopropanol (11). Desorption kinetics reveal excellent fit of the nonlinear pseudo-second-order equation on desorption data, indicating chemisorption as the rate-determining step. Results of the thermodynamics study show the spontaneous (ΔG° ≤ -2.08 kJ mol-1) and endothermic (ΔH° = 32.35 kJ mol-1) nature of sulfur desorption using acetone as eluent. Maximum regeneration efficiency was attained at 93% after washing the spent adsorbent with acetone followed by oven-drying. Scanning electron microscopy, Fourier transform infrared, and X-ray diffraction spectroscopy analyses reveal the intact and undamaged structure of neutral activated alumina even after adsorbent regeneration. Overall, the present work demonstrates the viability of neutral activated alumina as an efficient and reusable adsorbent for the removal of sulfur compounds from liquid fossil fuels.Among various types of renewable energy, geothermal energy is recognized as an effective method for supplying thermal energy. Ground heat exchangers, as the main part of a geothermal energy system, are utilized for the extraction of the heat from the ground. Helical-shaped geothermal heat exchangers are very popular in this field as they need less land space compared to the other traditional straight ones. They have simple assembly and a high density of coils in their configuration. Considerable efforts have been done on the development of this type of geothermal heat exchanger. However, this topic has not been subject to a review. To address this issue, we present an overview of the potentials and challenges of helical-shaped geothermal heat exchangers in this study. The environmental and economic aspects, recent progress about the numerical simulations, soil features, different types and arrangements, and geometrical parameters for this type of heat exchangers are investigated. The installation cost is a critical challenge in the practical applications of these exchangers. However, the previous studies are mostly focused on the technical evaluation and optimization of the thermal performance of this type of heat exchanger, while little attention is paid to their installation costs. It is essential to understand the potential environmental impacts of each renewable energy technology to have a correct evaluation of the system. The life cycle assessment can be used as a proper method to assess the environmental issues of the helical-shaped geothermal heat exchanger in the studies.The present investigation was conducted to estimate the acute toxicity of Thymus linearis plant extract, its effect on hemato-biochemical parameters and behavioural response in the golden mahseer (Tor putitora). The phytochemical composition present in T. linearis plant extrat were Alkaloids, Flavonoids, Phenols and Tannin. The fishes were subjected to eight different concentrations of T. linearis leaves extract (8.25, 8.50, 8.75, 9.00, 9.25, 9.50 and 9.75 mg/kg) and the control group without plant extract for 96-h LD50 study. The mortality was recorded every 24 h post-treatment. Minimum mortality was recorded in the 8.25 mg/kg, whereas 100% mortality was recorded in the 9.75 mg/kg T. linearis extract after 96-h periods. The LD50 was estimated by probit analysis, and the value of T. linearis at 96 h was found to be 8.71 mg/kg for golden mahseer. A non-lethal dose of 1/10th of 96-h LD50 value (0.87 mg/kg) was taken for the sublethal study. After 96 h, the red blood cell (RBC), white blood cell (WBC), haemoglobin (Hb), packed cell volume (PCV) and blood glucose were measured. RBC (×106/mm3), Hb (%) and PCV (%) significantly decreased at 8.25, 8.50, 8.75, 9.00 mg/kg, but WBC and blood glucose significantly increase at 8.25, 8.50, 8.75, 9.00 mg/kg of T. linearis plant extract. The observations on behaviour response of golden mahseer were also recorded. In the present study, the acute toxicity of wild ajwain was more significant than short-term toxicity. The mortality rate was very high during the study period of T. linearis exposure.Chagan Lake is located in the high-fluorine area of western Jilin, with high fluoride content in surface water, soil, and groundwater around it. Due to its unique topography and hydrogeological conditions, Chagan Lake collects surrounding water and is closely connected with groundwater. The complex surrounding water not only affects the groundwater quality through Chagan Lake, but also affects groundwater through the infiltration of vadose zone. In order to further study the characteristics of the migration of F- in the soil around Chagan Lake along with water flow in the vadose zone and its impact on groundwater, soil column experiments were carried out using soil collected in the field, combined with HYDRUS-1D to simulate the migration characteristics of F-. The model was verified by measured data, the sensitivity of each parameter was analyzed by the single-factor disturbance method, and the effect of F- on groundwater was simulated and predicted. The results showed that (1) the soil column experiment was carried out using transport solutions of different pH value.
Homepage: https://www.selleckchem.com/
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.