NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Contact Getting on Individuals with Keratoconus * A new Retrospective Assessment associated with Two hundred Sufferers.
Brazil has an extensive coastline and Exclusive Economic Zone (EEZ) area, which are of high economic and strategic importance. A Maritime Surveillance System becomes necessary to provide information and data to proper authorities, and target tracking is crucial. This paper focuses on a multitarget tracking application to a large-scale maritime surveillance system. The system is composed of a sensor network distributed over an area of interest. Due to the limited computational capabilities of nodes, the sensors send their tracking data to a central station, which is responsible for gathering and processing information obtained by the distributed components. The local Multitarget Tracking (MTT) algorithm employs a random finite set approach, which adopts a Gaussian mixture Probability Hypothesis Density (PHD) filter. The proposed data fusion scheme, utilized in the central station, consists of an additional step of prune & merge to the original GM PHD filter algorithm, which is the main contribution of this work. Through simulations, this study illustrates the performance of the proposed algorithm with a network composed of two stationary sensors providing the data. This solution yields a better tracking performance when compared to individual trackers, which is attested by the Optimal Subpattern Assignment (OSPA) metric and its location and cardinality components. The presented results illustrate the overall performance improvement attained by the proposed solution. Moreover, they also stress the need to resort to a distributed sensor network to tackle real problems related to extended targets.There is no doubt that new technology has become one of the crucial parts of most people's lives around the world. By and large, in this era, the Internet and the Internet of Things (IoT) have become the most indispensable parts of our lives. Recently, IoT technologies have been regarded as the most broadly used tools among other technologies. The tools and the facilities of IoT technologies within the marketplace are part of Industry 4.0. The marketplace is too regarded as a new area that can be used with IoT technologies. One of the main purposes of this paper is to highlight using IoT technologies in Industry 4.0, and the Industrial Internet of Things (IIoT) is another feature revised. This paper focuses on the value of the IoT in the industrial domain in general; it reviews the IoT and focuses on its benefits and drawbacks, and presents some of the IoT applications, such as in transportation and healthcare. In addition, the trends and facts that are related to the IoT technologies on the marketplace are reviewed. Finally, the role of IoT in telemedicine and healthcare and the benefits of IoT technologies for COVID-19 are presented as well.Epilepsy is a complex neurological condition that affects a large number of people worldwide. Electroencephalography (EEG) measures the electrical activity of the brain and is widely used in epilepsy diagnosis, but it usually requires manual inspection, which can be hours long, by a neurologist. Several automatic systems have been proposed to detect epilepsy but still have some unsolved issues. In this study, we proposed a dynamic method using a deep learning model (Epileptic-Net) to detect an epileptic seizure. The proposed method is largely heterogeneous and comprised of the dense convolutional blocks (DCB), feature attention modules (FAM), residual blocks (RB), and hypercolumn technique (HT). Firstly, DCB is used to get the discriminative features from the EEG samples. Then, FAM extracts the essential features from the samples. After that, RB learns more vital parts as it entirely uses information in the convolutional layer. Finally, HT retains the efficient local features extracted from the layers situated at the different levels of the model. Its performance has been evaluated on the University of Bonn EEG dataset, divided into five distinct classes. The proposed Epileptic-Net achieves the average accuracy of 99.95% in the two-class classification, 99.98% in the three-class classification, 99.96% in the four-class classification, and 99.96% in classifying the complicated five-class problem. Thus the proposed approach shows more competitive results than the existing model to detect epileptic seizures. We also hope that this method can support experts in achieving objective and reliable results, lowering the misdiagnosis rate, and assisting in decision-making.Due to the excellent directivity, strong penetrability, and no electromagnetic shielding effect, ultrasonic waves have good potential for wireless energy transmission and information transfer inside and outside of sealed metal devices. However, traditional ultrasonic based energy transmission methods usually result in considerable energy consumption because of the impedance mismatch during the impedance modulation of the communication. This paper presents an optimal design method for efficient energy transfer during ultrasonic communication. The channel equivalent circuit model is established by only using the acoustic-electric channel scattering parameters. According to the equivalent circuit model, the channel impedance matches with a weak mismatch state is performed during the communication. In this way, the impedance modulation effect is ensured with a lower decrease in the energy transmission efficiency. Finally, the simultaneous energy transmission and impedance modulation are carried out through the 11 mm thick 304 stainless steel plate. The transmission power is 37.86 W with a transmission efficiency of 45.75%, and the modulation rate is 10 Kbps. Compared with the traditional methods, our proposed energy transmission efficiency is increased by 17.62%. The results verify the proposed method's effectiveness and the high accuracy of the model. The proposed method has great engineering applications and broad prospects in condition monitoring of metallic environments.Prosthetic arms are designed to assist amputated individuals in the performance of the activities of daily life. Brain machine interfaces are currently employed to enhance the accuracy as well as number of control commands for upper limb prostheses. However, the motion prediction for prosthetic arms and the rehabilitation of amputees suffering from transhumeral amputations is limited. In this paper, functional near-infrared spectroscopy (fNIRS)-based approach for the recognition of human intention for six upper limb motions is proposed. The data were extracted from the study of fifteen healthy subjects and three transhumeral amputees for elbow extension, elbow flexion, wrist pronation, wrist supination, hand open, and hand close. The fNIRS signals were acquired from the motor cortex region of the brain by the commercial NIRSport device. The acquired data samples were filtered using finite impulse response (FIR) filter. Furthermore, signal mean, signal peak and minimum values were computed as feature set. An artificial neural network (ANN) was applied to these data samples. The results show the likelihood of classifying the six arm actions with an accuracy of 78%. The attained results have not yet been reported in any identical study. These achieved fNIRS results for intention detection are promising and suggest that they can be applied for the real-time control of the transhumeral prosthesis.We report on ultraviolet (UV) sensors employing high voltage PIN lateral photodiode strings integrated into the production RF SOI (silicon on isolator) CMOS platform. The sensors were optimized for applications that require measurements of short wavelength ultraviolet (UVC) radiation under strong visible and near-infrared lights, such as UV used for sterilization purposes, e.g., COVID-19 disinfection. Responsivity above 0.1 A/W in the UVC range was achieved, and improved blindness to visible and infrared (IR) light demonstrated by implementing back-end dielectric layers transparent to the UV, in combination with differential sensing circuits with polysilicon UV filters. Degradation of the developed sensors under short wavelength UV was investigated and design and operation regimes allowing decreased degradation were discussed. Compared with other embedded solutions, the current design is implemented in a mass-production CMOS SOI technology, without additional masks, and has high sensitivity in UVC.Owing to imperfect scans, occlusions, low reflectance of the scanned surface, and packet loss, there may be several incomplete regions in the 3D point cloud dataset. These missing regions can degrade the performance of recognition, classification, segmentation, or upsampling methods in point cloud datasets. In this study, we propose a new approach to estimate the incomplete regions of 3D point cloud human face datasets using the masking method. First, we perform some preprocessing on the input point cloud, such as rotation in the left and right angles. Then, we project the preprocessed point cloud onto a 2D surface and generate masks. Finally, we interpolate the 2D projection and the mask to produce the estimated point cloud. We also designed a deep learning model to restore the estimated point cloud to improve its quality. We use chamfer distance (CD) and hausdorff distance (HD) to evaluate the proposed method on our own human face and large-scale facial model (LSFM) datasets. The proposed method achieves an average CD and HD results of 1.30 and 21.46 for our own and 1.35 and 9.08 for the LSFM datasets, respectively. see more The proposed method shows better results than the existing methods.The detection of immunoglobulin G (IgG) oligoclonal bands (OCB) in cerebrospinal fluid (CSF) by isoelectric focusing (IEF) is a valuable tool for the diagnosis of multiple sclerosis. Over the last decade, the results of our clinical research have suggested that tears are a non-invasive alternative to CSF. However, since tear samples have a lower IgG concentration than CSF, a sensitive OCB detection is therefore required. We are developing the first automatic tool for IEF analysis, with a view to speeding up the current visual inspection method, removing user variability, reducing misinterpretation, and facilitating OCB quantification and follow-up studies. The removal of band distortion is a key image enhancement step in increasing the reliability of automatic OCB detection. Here, we describe a novel, fully automatic band-straightening algorithm. The algorithm is based on a correlation directional warping function, estimated using an energy minimization procedure. The approach was optimized via an innovative coupling of a hierarchy of image resolutions to a hierarchy of transformation, in which band misalignment is corrected at successively finer scales. The algorithm's performance was assessed in terms of the bands' standard deviation before and after straightening, using a synthetic dataset and a set of 200 lanes of CSF, tear, serum and control samples on which experts had manually delineated the bands. The number of distorted bands was divided by almost 16 for the synthetic lanes and by 7 for the test dataset of real lanes. This method can be applied effectively to different sample types. It can realign minimal contrast bands and is robust for non-uniform deformations.
Homepage: https://www.selleckchem.com/products/itacnosertib.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.