NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Cholesterol levels Granuloma: Strange Mistake for Hodgkin Lymphoma Assessment Together with 18F-FDG PET/CT.
A fetal ultrasound (US) is a technique to examine a baby's maturity and development. US examinations have varying purposes throughout pregnancy. Consequently, in the second and third trimester, US tests are performed for the assessment of Amniotic Fluid Volume (AFV), a key indicator of fetal health. Disorders resulting from abnormal AFV levels, commonly referred to as oligohydramnios or polyhydramnios, may pose a serious threat to a mother's or child's health. This paper attempts to accumulate and compare the most recent advancements in Artificial Intelligence (AI)-based techniques for the diagnosis and classification of AFV levels. Additionally, we provide a thorough and highly inclusive breakdown of other relevant factors that may cause abnormal AFV levels, including, but not limited to, abnormalities in the placenta, kidneys, or central nervous system, as well as other contributors, such as preterm birth or twin-to-twin transfusion syndrome. Furthermore, we bring forth a concise overview of all the Machine Learning (ML) and Deep Learning (DL) techniques, along with the datasets supplied by various researchers. This study also provides a brief rundown of the challenges and opportunities encountered in this field, along with prospective research directions and promising angles to further explore.A data-driven-based methodology for SHM in reinforced concrete structures using embedded fiber optic sensors and pattern recognition techniques is presented. A prototype of a reinforced concrete structure was built and instrumented in a novel fashion with FBGs bonded directly to the reinforcing steel bars, which, in turn, were embedded into the concrete structure. The structure was dynamically loaded using a shaker. Superficial positive damages were induced using bonded thin steel plates. Data for pristine and damaged states were acquired. Classifiers based on Mahalanobis' distance of the covariance data matrix were developed for both supervised and unsupervised pattern recognition with an accuracy of up to 98%. It was demonstrated that the proposed sensing scheme in conjunction with the developed supervised and unsupervised pattern recognition techniques allows the detection of slight stiffness changes promoted by damages, even when strains are very small and the changes of these associated with the damage occurrence may seem negligible.The development of predictive in vitro sensing tools able to provide rapid information on the different bioactivities of a sample is of pivotal importance, not only to monitor environmental toxicants, but also to understand their mechanisms of action on diverse molecular pathways. This mechanistic understanding is highly important for the characterization of toxicological hazards, and for the risk assessment of chemicals and environmental samples such as surface waters and effluents. Prompted by this need, we developed and optimized a straightforward bioluminescent multiplexed assay which enables the measurement of four bioactivities, selected for their relevance from a toxicological perspective, in bioluminescent microtissues. The assay was developed to monitor inflammatory, antioxidant, and toxic activity, and the presence of heavy metals, and was successfully applied to the analysis of river water samples, showing potential applicability for environmental analyses. The assay, which does not require advanced equipment, can be easily implemented in general laboratories equipped with basic cell culture facilities and a luminometer.Level 5 autonomy, as defined by the Society of Automotive Engineers, requires the vehicle to function under all weather and visibility conditions. This sensing problem becomes significantly challenging in weather conditions that include events such as sudden changes in lighting, smoke, fog, snow, and rain. No standalone sensor currently in the market can reliably perceive the environment in all conditions. While regular cameras, lidars, and radars will suffice for typical driving conditions, they may fail in some edge cases. The goal of this paper is to demonstrate that the addition of Long Wave Infrared (LWIR)/thermal cameras to the sensor stack on a self-driving vehicle can help fill this sensory gap during adverse visibility conditions. In this paper, we trained a machine learning-based image detector on thermal image data and used it for vehicle detection. For vehicle tracking, Joint Probabilistic Data association and Multiple Hypothesis Tracking approaches were explored where the thermal camera information was fused with a front-facing radar. The algorithms were implemented using FLIR thermal cameras on a 2017 Lincoln MKZ operating in College Station, TX, USA. The performance of the tracking algorithm has also been validated in simulations using Unreal Engine.The filtered-x recursive least square (FxRLS) algorithm is widely used in the active noise control system and has achieved great success in some complex de-noising environments, such as the cabin in vehicles and aircraft. However, its performance is sensitive to some user-defined parameters such as the forgetting factor and initial gain. Once these parameters are not selected properly, the de-noising effect of FxRLS will deteriorate. Moreover, the tracking performance of FxRLS for mutation is still restricted to a certain extent. find more To solve the above problems, this paper proposes a new proportional FxRLS (PFxRLS) algorithm. The forgetting factor and initial gain sensitivity are successfully reduced without introducing new turning parameters. The de-noising level and tracking performance have also been improved. Moreover, the momentum technique is introduced in PFxRLS to further improve its robustness and de-noising level. To ensure stability, its convergence condition is also discussed in this paper. The effectiveness of the proposed algorithms is illustrated by simulations and experiments with different user-defined parameters and time-varying noise environments.Bluetooth monitoring systems (BTMS) have opened a new era in traffic sensing, providing a reliable, economical, and easy-to-deploy solution to uniquely identify vehicles. Raw data from BTMS have traditionally been used to calculate travel time and origin-destination matrices. However, we could extend this to include other information like the number of vehicles or their residence times. This information, together with their temporal components, can be applied to the complex task of forecasting traffic. Level of service (LOS) prediction has opened a novel research line that fulfills the need to anticipate future traffic states, based on a standard link-based variable, accepted for both researchers and practitioners. In this paper, we incorporate BTMS's extended variables and temporal information to an LOS classifier based on a Random Undersampling Boost algorithm, which is proven to efficiently respond to the data unbalance intrinsic to this problem. By using this approach, we achieve an overall recall of 87.2% for up to 15-min prediction horizons, reaching 96.6% predicting congestion, and improving the results for the intermediate traffic states, especially complex given their intrinsic instability. Additionally, we provide detailed analyses on the impact of temporal information on the LOS predictor's performance, observing improvements up to a separation of 50 min between last features and prediction horizons. Furthermore, we study the predictor importance resulting from the classifiers to highlight those features contributing the most to the final achievements.Satellite and UAV (unmanned aerial vehicle) imagery has become an important source of data for Geographic Information Systems (GISs) [...].In order to solve the problem of inconsistent state estimation when multiple autonomous underwater vehicles (AUVs) are co-located, this paper proposes a method of multi-AUV co-location based on the consistent extended Kalman filter (EKF). Firstly, the dynamic model of cooperative positioning system follower AUV under two leaders alternately transmitting navigation information is established. Secondly, the observability of the standard linearization estimator based on the lead-follower multi-AUV cooperative positioning system is analyzed by comparing the subspace of the observable matrix of state estimation with that of an ideal observable matrix, it can be concluded that the estimation of state by standard EKF is inconsistent. Finally, aiming at the problem of inconsistent state estimation, a consistent EKF multi-AUV cooperative localization algorithm is designed. The algorithm corrects the linearized measurement values in the Jacobian matrix for cooperative positioning, ensuring that the linearized estimator can obtain accurate measurement values. The positioning results of the follower AUV under dead reckoning, standard EKF, and consistent EKF algorithms are simulated, analyzed, and compared with the real trajectory of the following AUV. The simulation results show that the follower AUV with a consistent EKF algorithm can keep synchronization with the leader AUV more stably.The intelligent transportation system (ITS) is inseparable from people's lives, and the development of artificial intelligence has made intelligent video surveillance systems more widely used. In practical traffic scenarios, the detection and tracking of vehicle targets is an important core aspect of intelligent surveillance systems and has become a hot topic of research today. However, in practical applications, there is a wide variety of targets and often interference factors such as occlusion, while a single sensor is unable to collect a wealth of information. In this paper, we propose an improved data matching method to fuse the video information obtained from the camera with the millimetre-wave radar information for the alignment and correlation of multi-target data in the spatial dimension, in order to address the problem of poor recognition alignment caused by mutual occlusion between vehicles and external environmental disturbances in intelligent transportation systems. The spatio-temporal alignment of the two sensors is first performed to determine the conversion relationship between the radar and pixel coordinate systems, and the calibration on the timeline is performed by Lagrangian interpolation. An improved Hausdorff distance matching algorithm is proposed for the data dimension to calculate the similarity between the data collected by the two sensors, to determine whether they are state descriptions of the same target, and to match the data with high similarity to delineate the region of interest (ROI) for target vehicle detection.Job Shop Scheduling is currently one of the most addressed planning and scheduling optimization problems in the field. Due to its complexity, as it belongs to the NP-Hard class of problems, meta-heuristics are one of the most commonly used approaches in its resolution, with Genetic Algorithms being one of the most effective methods in this category. However, it is well known that this meta-heuristic is affected by phenomena that worsen the quality of its population, such as premature convergence and population concentration in regions of local optima. To circumvent these difficulties, we propose, in this work, the use of a guidance operator responsible for modifying ill-adapted individuals using genetic material from well-adapted individuals. We also propose, in this paper, a new method of determining the genetic quality of individuals using genetic frequency analysis. Our method is evaluated over a wide range of modern GAs and considers two case studies defined by well-established JSSP benchmarks in the literature.
Here's my website: https://www.selleckchem.com/products/gsk3326595-epz015938.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.