Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In the present study, the suitability of various chemical treatments to improve the performance of jute fibers (JFs) filled natural rubber (NR) composites was explored. The surface of JFs was modified by three different surface treatments, namely, alkali treatment, combined alkali/stearic acid treatment and combined alkali/silane treatment. Surface modified JFs were characterized by X-ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). The reinforcing effect of untreated and surface treated JFs in NR composites was comparatively evaluated in terms of cure, mechanical, morphological and thermal properties. Combined alkali/silane treated JFs filled NR composite showed considerably higher torque difference, tensile modulus, hardness and tensile strength as compared to either untreated or other surface treated JFs filled NR systems. A crosslink density measurement suggested effective rubber-fibers interaction in combined alkali/silane treated JFs filled NR composite. Morphological analysis confirmed the improvement in the interfacial bonding between NR matrix and JFs due to combined alkali/silane treatment allowing an efficient "stress-transfer" mechanism. As a whole, combined alkali/silane treatment was found to be most efficient surface treatment method to develop strong interfacial adhesion between NR matrix and JFs.The loose accumulation CAUSED by landslide, collapse, debris flow, and mine blasting, exerts considerable negative influence to human activities. Besides, it can easily trigger secondary disaster under inner and outer geological conditions. Extraction and measurement of the particle of loose accumulation is of importance for prediction of slope stability and mine blasting. In this paper, the 3D laser scanning is utilized to collect the point clouds of granular materials in physical model (three types of materials) and landslide accumulation in field, respectively. Then, the alpha shapes (AS) and hill climbing-region growing (HC-RG) algorithms are introduced for identifying particles and finding their dimensions (e.g., particle number and radii). Comparison between the recognition results and reality shows that both algorithms can provide a good performance in laboratory physical model, and acceptable results can be obtained when applying two algorithm to field survey. AS algorithm needs less time to process data than HC-GR algorithm; however, the recognition from HC-RG algorithm is more accurate than that by AS algorithm.The design and synthesis of solid sorbents for effective carbon dioxide adsorption are essential for practical applications regarding carbon emissions. Herein, we report the synthesis of composite materials consisting of amine-functionalized imidazolium-type poly(ionic liquid) (PIL) and metal organic frameworks (MOFs) through complexation of amino groups and metal ions. The carbon dioxide adsorption behavior of the synthesized composite materials was evaluated using the temperature-programmed desorption (TPD) technique. Benefiting from the large surface area of metal organic frameworks and high carbon dioxide diffusivity in ionic liquid moieties, the carbon dioxide adsorption capacity of the synthesized composite material reached 19.5 cm3·g-1, which is much higher than that of pristine metal organic frameworks (3.1 cm3·g-1) under carbon dioxide partial pressure of 0.2 bar at 25 °C. The results demonstrate that the combination of functionalized poly(ionic liquid) with metal organic frameworks can be a promising solid sorbent for carbon dioxide adsorption.Electrodeposition is a versatile technique for the fabrication of electrodes in micro-electroanalytical devices. Conductive but low-cost materials, such as copper, can be coated with functional yet higher-cost materials such as gold or silver using electrodeposition to lower the overall cost while maintaining functionality. When the electrodeposition of multiple materials is required, current methods use a multistep process that deposits one material at a time, which requires a significant amount of time and a significant number of steps. Additionally, they use a large volume of electrolytes suitable for coating large objects, which is wasteful and unnecessary for the prototyping or coating of microelectrodes with a small area. In this paper, a new method of electroplating is introduced in which we used gels to immobilize and pattern electroplating electrolytes on a substrate surface. Agarose, as an immobilizing medium, enables the immersion of the substrate in a common working electrolyte without cross-mixing different electrolytes. We demonstrate the printing of jelly electrolytes by using spot-dispensing or microfluidic flow. Xurographically patterned films laminated on the substrate function as a mask and confine the printed gels to desired locations. After printing, the substrate is placed in a common working electrolyte container, and multimaterial patterns are produced through the application of an electrical current in a single step.Nowadays, concrete degradation is a major problem in the civil engineering field. selleck chemical Concrete carbonation, one of the main sources of structures' degradation, causes concrete's pH to decrease; hence, enabling the necessary conditions for corrosion reinforcement. An accurate, non-destructive sensor able to monitor the pH decrease resistant to concrete conditions is envisaged by many researchers. Optical fibre sensors (OFS) are generally used for concrete applications due to their high sensitivity and resistance to external interferences. Organic-inorganic hybrid (OIH) films, for potential functionalization of OFS to be applied in concrete structures, were developed. Polydimethylsiloxane (PDMS) based sol-gel materials were synthesized by the formation of an amino alcohol precursor followed by hydrolysis and condensation. Different ratios between PDMS and (3-aminopropyl)triethoxysilane (3-APTES) were studied. The synthesized OIH films were characterized by Fourier-transformed infrared spectroscopy (FTIR), UV-Vis spectroscopy, electrochemical impedance spectroscopy (EIS) and thermogravimetric analysis (TGA). The OIH films were doped with phenolphthalein (Phph), a pH indicator, and were characterized by UV-Vis and EIS. FTIR characterization showed that the reaction between both precursors, the hydrolysis and the condensation reactions occurred successfully. UV-Vis characterization confirmed the presence of Phph embedded in the OIH matrices. Dielectric and thermal properties of the materials showed promising properties for application in contact with a high alkaline environment.
My Website: https://www.selleckchem.com/products/perhexiline-maleate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team