Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
High resolution microscopy is heavily dependent on superb optical elements and superresolution microscopy even more so. Correcting unavoidable optical aberrations during post-processing is an elegant method to reduce the optical system's complexity. A prime method that promises superresolution, aberration correction, and quantitative phase imaging is Fourier ptychography. This microscopy technique combines many images of the sample, recorded at differing illumination angles akin to computed tomography and uses error minimisation between the recorded images with those generated by a forward model. The more precise knowledge of those illumination angles is available for the image formation forward model, the better the result. Therefore, illumination estimation from the raw data is an important step and supports correct phase recovery and aberration correction. Here, we derive how illumination estimation can be cast as an object detection problem that permits the use of a fast convolutional neural network (CNN) for this task. We find that faster-RCNN delivers highly robust results and outperforms classical approaches by far with an up to 3-fold reduction in estimation errors. Intriguingly, we find that conventionally beneficial smoothing and filtering of raw data is counterproductive in this type of application. We present a detailed analysis of the network's performance and provide all our developed software openly.We investigated the switching dynamics of optical modulators consisting of a Si waveguide with a VO2 cladding layer by utilizing the photothermal effect, which induces a metal-insulator transition in VO2. The devices exhibited stable optical switching with a high extinction ratio exceeding 16 dB. The switching time of the insulator-to-metal transition (heating process) ranged from tens of nanoseconds to microseconds depending on the incident light power, and that of the metal-to-insulator transition (cooling process) was several microseconds regardless of the incident light power. The heat transfer in the devices was numerically simulated to reproduce the switching characteristics and revealed that the temperature change in the first few micrometers of the VO2/Si waveguide governed the switching time. The thermal structural design of the device is thus of key importance to improve the switching speed of the device.Optical sectioning fluorescence microscopy provides high contrast images of volumetric samples and has been widely used for many biological applications. However, simultaneously acquiring multi-color fluorescence images require additional optical elements and devices, which are bulky, wavelength specific, and not cost-effective. In this paper, wavelength-coded volume holographic gratings (WC-VHGs) based optical sectioning fluorescence microscopy is proposed to simultaneously offer multi-color fluorescence images with fine out-of-focus background rejection. Due to wavelength degeneracy, multiplexed WC-VHGs are capable of acquiring multi-wavelength fluorescence images in a single shot, and displaying the laterally separated multi-wavelength images onto CCD. In our system optical sectioning capability is achieved through speckle illumination and HiLo imaging method. To demonstrate imaging characteristics of our system, dual-wavelength fluorescence images of both standard fluorescent microspheres and ex vivo mT/mG mice cardiac tissue are presented. Current results may find important applications in hyperspectral imaging for biomedical research.Ghost imaging is a promising technique for shape reconstruction using two spatially correlated beams one beam interacts with a target and is collected with a bucket detector, and the other beam is measured with a pixelated detector. However, orthodox ghost imaging always provides unsatisfactory results for unstained samples, phase objects, or highly transparent objects. Here we present a dark-field ghost imaging technique that can work well for these "bad" targets. The only difference from orthodox ghost imaging is that the bucket signals rule out the target's unscattered beam. As experimental proof, we demonstrate images of fine copper wires, quartz fibers, scratched and damaged glass plates, a pure phase object, and biospecimens.Light scattering characteristics of the cyanobacterium Microcystis are investigated with numerical models for sphere aggregates. During summer bloom seasons, Microcystis is prevalent in many inland waters across the globe. Monitoring concentrations with remote sensing techniques requires knowledge of the inherent optical properties (IOPs), especially the backscattering properties of Microcystis cells and colonies in natural settings. In situ measurements in waters dominated by Microcystis blooms have previously detected extremely high backscattering ratios, i.e., bb/b>0.043 at 443 nm [1], the highest to our knowledge in the natural environment. These highbb/bvalues could hold promise as a diagnostic tool in identifying and monitoring Microcystis using optical approaches. However, it has been unclear how this type of optically 'soft' organic particle can generate such highbb/bvalues. In this study, the Multiple Sphere T-matrix (MSTM) model is used to calculate the IOPs of model colonies, including bb/b. Colony direct measurements from Lake Erie. Polarized scattering was also of interest as a diagnostic tool, particularly with future Earth-orbiting polarimeters being deployed for the NASA Plankton, Aerosols, Cloud, ocean Ecosystem (PACE) mission. FGF401 purchase The Degree of Linear Polarization (DoLP), expressed by the ratio of two Mueller matrix elements-P12/P11, decreased with increasing colony cell number for Microcystis. Another ratio of two Mueller matrix elementsP22/P11, an index for nonsphericity, also decreased with increasing colony size. In addition to higher relative backscattering, greater colony packing density and larger gas vacuole sizes both led to lower DoLP peak magnitude and lowerP22/P11. An optical opposition feature due to constructive phase interference that was observed previously for cosmic dusts is also present for these modeled colonies, manifested by a narrow intensity peak and negative polarization dip near exact backscattering direction, gradually forming as colony size increases.
Homepage: https://www.selleckchem.com/products/fgf401.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team