NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

We should get wild: Overview of free-ranging rat assays because context-enriched health supplements in order to conventional clinical types.
INR is a suitable predictor for postoperative outcome, while serum-bilirubin levels had no predictive value. The INR can help deciding between PBD and upfront surgery. If PBD is inevitable, drainage duration of >4 weeks reduced major complications.

Clinical study.
Clinical study.
Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care.

This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice.

We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic po the science of machine learning or relating to the clinical implementations.

Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. learn more These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.
Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.
In digital pathology, the morphology and architecture of prostate glands have been routinely adopted by pathologists to evaluate the presence of cancer tissue. The manual annotations are operator-dependent, error-prone and time-consuming. The automated segmentation of prostate glands can be very challenging too due to large appearance variation and serious degeneration of these histological structures.

A new image segmentation method, called RINGS (Rapid IdentificatioN of Glandural Structures), is presented to segment prostate glands in histopathological images. We designed a novel glands segmentation strategy using a multi-channel algorithm that exploits and fuses both traditional and deep learning techniques. Specifically, the proposed approach employs a hybrid segmentation strategy based on stroma detection to accurately detect and delineate the prostate glands contours.

Automated results are compared with manual annotations and seven state-of-the-art techniques designed for glands segmentation. Beinmake accurate diagnosis and treatment. The developed model can be used to support prostate cancer diagnosis in polyclinics and community care centres.Clinical trials are the basis of Evidence-Based Medicine. Trial results are reviewed by experts and consensus panels for producing meta-analyses and clinical practice guidelines. However, reviewing these results is a long and tedious task, hence the meta-analyses and guidelines are not updated each time a new trial is published. Moreover, the independence of experts may be difficult to appraise. On the contrary, in many other domains, including medical risk analysis, the advent of data science, big data and visual analytics allowed moving from expert-based to fact-based knowledge. Since 12 years, many trial results are publicly available online in trial registries. Nevertheless, data science methods have not yet been applied widely to trial data. In this paper, we present a platform for analyzing the safety events reported during clinical trials and published in trial registries. This platform is based on an ontological model including 582 trials on pain treatments, and uses semantic web technologies for querying this dataset at various levels of granularity. It also relies on a 26-dimensional flower glyph for the visualization of the Adverse Drug Events (ADE) rates in 13 categories and 2 levels of seriousness. We illustrate the interest of this platform through several use cases and we were able to find back conclusions that were initially found during meta-analyses. The platform was presented to four experts in drug safety, and is publicly available online, with the ontology of pain treatment ADE.This paper presents a method for automatic segmentation of tympanic membranes (TMs) from video-otoscopic images based on deep fully convolutional neural network. Built upon the UNet architecture, the proposed EAR scheme is based on three main paradigms EfficientNet for the encoder, Attention gate for the skip connection path, and Residual blocks for the decoder. The paper also introduces a new loss function term for the neural networks to perform segmentation tasks. Particularly, we propose to integrate EfficientNet-B4 into the encoder part of the UNet. In addition, the decoder part of the proposed network is constructed based on residual blocks from ResNet architecture. By this way, the proposed approach could take advantages of the EfficientNet and ResNet architectures such as preserving efficient reception field size for the model and avoiding overfitting problem. In addition, in the skip connection path, we employ the attention gate that can handle the varieties in shapes and sizes of interested objects, which are common issues in TM regions. Moreover, for network training, we proposed a new loss function term based on the shape distance between predicted and ground truth masks, and exploited the stochastic weight averaging to avoid being trapped in local minima. We evaluate the proposed approach on a TM dataset which includes 1012 otoscopic images from patients diagnosed with and without otitis media. Experimental results show that the proposed approach achieves high segmentation performance with the average Dice similarity coefficient of 0.929, without any pre- or post-processing steps, that outperforms other state-of-the-art methods.Suboptimal health related behaviors and habits; and resulting chronic diseases are responsible for majority of deaths globally. Studies show that providing personalized support to patients yield improved results by preventing and/or timely treatment of these problems. Digital, just-in-time and adaptive interventions are mobile phone-based notifications that are being utilized to support people wherever and whenever necessary in coping with their health problems. In this research, we propose a reinforcement learning-based mechanism to personalize interventions in terms of timing, frequency and preferred type(s). We simultaneously employ two reinforcement learning models, namely intervention-selection and opportune-moment-identification; capturing and exploiting changes in people's long-term and momentary contexts respectively. While the intervention-selection model adapts the intervention delivery with respect to type and frequency, the opportune-moment-identification model tries to find the most opportune moments to deliver interventions throughout a day. We propose two accelerator techniques over the standard reinforcement learning algorithms to boost learning performance. First, we propose a customized version of eligibility traces for rewarding past actions throughout an agent's trajectory. Second, we utilize the transfer learning method to reuse knowledge across multiple learning environments. We validate the proposed approach in a simulated experiment where we simulate four personas differing in their daily activities, preferences on specific intervention types and attitudes towards the targeted behavior. Our experiments show that the proposed approach yields better results compared to the standard reinforcement learning algorithms and successfully capture the simulated variations associated with the personas.Patients with Parkinson's disease (PD) have distinctive voice patterns, often perceived as expressing sad emotion. While this characteristic of Parkinsonian speech has been supported through the perspective of listeners, where both PD and healthy control (HC) subjects repeat the same speaking tasks, it has never been explored through a machine learning modelling approach. Our work provides an objective evaluation of this characteristic of the PD speech, by building a transfer learning system to assess how the PD pathology affects the sadness perception. To do so we introduce a Mixture-of-Experts (MoE) architecture for speech emotion recognition designed to be transferable across datasets. Firstly, by relying on publicly available emotional speech corpora, we train the MoE model and then we use it to quantify perceived sadness in never seen before PD and matched HC speech recordings. To build our models (experts), we extracted spectral features of the voicing parts of speech and we trained a gradient boosting decision trees model in each corpus to predict happiness vs. sadness. MoE predictions are created by weighting each expert's prediction according to the distance between the new sample and the expert-specific training samples. The MoE approach systematically infers more negative emotional characteristics in PD speech than in HC. Crucially, these judgments are related to the disease severity and the severity of speech impairment in the PD patients the more impairment, the more likely the speech is to be judged as sad. Our findings pave the way towards a better understanding of the characteristics of PD speech and show how publicly available datasets can be used to train models that provide interesting insights on clinical data.
Here we aimed to automatically classify human emotion earlier than is typically attempted. There is increasing evidence that the human brain differentiates emotional categories within 100-300 ms after stimulus onset. Therefore, here we evaluate the possibility of automatically classifying human emotions within the first 300 ms after the stimulus and identify the time-interval of the highest classification performance.

To address this issue, MEG signals of 17 healthy volunteers were recorded in response to three different picture stimuli (pleasant, unpleasant, and neutral pictures). Six Linear Discriminant Analysis (LDA) classifiers were used based on two binary comparisons (pleasant versus neutral and unpleasant versus neutral) and three different time-intervals (100-150 ms, 150-200 ms, and 200-300 ms post-stimulus). The selection of the feature subsets was performed by Genetic Algorithm and LDA.

We demonstrated significant classification performances in both comparisons. The best classification performance was achieved with a median AUC of 0.83 (95 %- CI [0.71; 0.87]) classifying brain responses evoked by unpleasant and neutral stimuli within 100-150 ms, which is at least 850 ms earlier than attempted by other studies.

Our results indicate that using the proposed algorithm, brain emotional responses can be significantly classified at very early stages of cortical processing (within 300 ms). Moreover, our results suggest that emotional processing in the human brain occurs within the first 100-150 ms.
Our results indicate that using the proposed algorithm, brain emotional responses can be significantly classified at very early stages of cortical processing (within 300 ms). Moreover, our results suggest that emotional processing in the human brain occurs within the first 100-150 ms.
Here's my website: https://www.selleckchem.com/products/nor-noha-dihydrochloride.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.