Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The aim of this study was to investigate the bioaccessibility of pesticide residues in blueberries (commercial and sample from controlled field trial) from Serbia, involving the presence of a complex food matrix and to assess the potential risk to human health. The presence of nine active substances (azoxystrobin, boscalid, fludioxonil, cyprodinil, pyrimethanil, pyridaben, pyriproxyfen, acetamiprid and thiametoxam) in initial blueberry samples was determined in concentration range from 5.15 μg/kg for thiametoxam to 187 μg/kg for azoxystrobin. Clothianidin, metabolite of thiametoxam, was not detected in any blueberry sample. However, after in vitro digestion, the content of initially detected pesticides residues was significantly decreased or it was below limit of quantification resulting in the total bioaccessibility of about 15%. Azoxystrobin, pyrimethanil and fludioxonil was quantified in digestive juice at concentrations which were about 81%, 37% and 10% less than the inital concentration, respectively. The presence of food matrix during digestion of blueberries even more severely reduced concentration of pesticide residues (total bioaccessibility was about 7%) compared to digestion without the food matrix. Only azoxystrobin was quantified after digestion with food matrix in concentration of 27 μg/kg in sample from controlled field trial and detected in two commercial samples but below the limit of quantification. Furthermore, chronic risk assessment indicated that risk is acceptable for the health of different human subpopulation groups. The current study on pesticides residues, most commonly applied on blueberries, provides for the first time an insight into their bioaccessibility under conditions that mimic physiological environment of human digestive tract. In recent years, global climate change and pollution of the marine environment have caused large-scale coral deaths and severe damages to coral reef ecosystems. Numerous studies have shown that coral diseases are closely related to microorganisms. And microplastics (MPs) are a potential threat to corals. In marine ecosystems, MPs are an emerging contaminant. MPs have a strong adsorption effect on pollutants in the water environment, and they are very easily colonized by microorganisms to form biofilms. Biofilms may accumulate many pathogens, increasing the probability of coral disease. However, there is no report about the composition of biofilms on the surface of microplastics in coral growth areas. In this study, nine kinds of MPs were chosen in the experiments, which are commonly found in the ocean. Four stakeout points were selected in the coral area. Biofilms were cultivated in natural environment. The composition and distribution of biofilms on the surface of the MPs were analyzed by 16 S rRNA sequencinc data for the toxicology research of MPs. In this study, fluorescent dissolved organic matter (FDOM) in real printing and dyeing wastewater (PDW) during full-scale two-stage treatment was characterized using excitation-emission matrix (EEM), apparent molecular weight (AMW) cutoff by centrifugal ultrafiltration and high-performance liquid chromatography with fluorescence detector (HPLC-FLD). EEMs of PDW during treatment were relatively invariable with two typical and dominant peaks (P1, 275/320 nm and P2, 230/340 nm). The removal rates of P1 intensity and P2 intensity were both lower than those of DOC or UVA254 during the 1st stage and 2nd stage treatment. The less then 3 kDa fraction made major contribution to DOC, UVA254, P1 and P2 intensity. The DOM fractions with different AMW exhibited different removal behaviors during the 1st stage and 2nd stage treatment. The less then 3 kDa fraction of FDOM was poorly removed by biological treatment alone. Selleckchem VP-16 The HPLC-FLD multi-emission scan results indicated that the major part of FDOM clusters were hydrophilic and they were more difficult to remove than the transphilic and hydrophobic FDOM clusters. According to the physicochemical properties of FDOM in PDW, selective adsorption and advanced oxidation process could be prior options for PDW advanced treatment. Laboratory experiments were performed to investigate the efficiency of a simultaneous metal stabilization, persulfate oxidation and bioremediation for decontaminating polybrominated diphenyl ethers (PBDEs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Biochar and bentonite were applied to the soil for immobilizing heavy metals (Cu, Pb, Zn and Ni). It was found that the toxicity level declined most significantly in the case of 20 g/kg biochar +20 g/kg bentonite. A low dose of persulfate (20 mmol/kg soil) was found to be suitable for oxidizing soil PBDEs and enhancing the bioavailability of PBDEs residue. Persulfate oxidation reduced the soil organic matter content, and caused dramatic decrease of bacterial density. Nevertheless, microbial activity and number recovered on the whole during 90 days of bioremediation. Finally, a degradation efficiency of 94.6% and a mineralization efficiency of 60.3% were obtained by the hybrid treatment scheme. The pyrosequencing analysis indicates that soil bacterial community changed obviously during the treatments, and there was an enrichment of PBDE-degrading populations during bioremediation relative to that of oxidized soil. Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. link2 This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. Magnetic ferrite/biochar composites are a kind of promising adsorbents due to their high adsorption efficiency and facile magnetic separation; however, their synthesis is associated with high cost and secondary environmental impacts. In this study, a novel Mn-Zn ferrite/biochar composite (MZF-BC) is synthesized via a green two-step biocheaching and hydrothermal method using waste batteries and pine sawdust. Characterization results indicate that the introduced Mn-Zn ferrite particles are successfully embedded and coated on biochar (BC), and synthesized MZF-BC50 with 50% BC content exhibits best performance with a specific surface area of 138.5 m2 g-1, the saturation magnetization of 27.5 emu g-1 and CEC value of 53.2 mmol 100 g-1. The maximum adsorption capacity of Pb2+ is 99.5 mg g-1 based on the Langmuir sorption isotherm study at 298 K, and pseudo-second-order model accurately describes the adsorption process. Regeneration test suggests that MZF-BC50 can be efficiently reused for 6 cycles. In addition, it exhibits a good selective Pb2+ and Cd2+ removal performance in lead-acid battery wastewater. The results illustrate that this newly developed material has low cost and rapid remediation of Pb2+ as good application potential. Bisphenol A (BPA) is widely used in industrial products. Due to the toxicity of this compound, and to comply with restrictions and regulations, manufacturers have progressively replaced it by substitutes. One of the main substitutes used is bisphenol S (BPS). Despite increasing use in many products, the effects of BPS on human health have been little investigated, and studies on percutaneous BPS absorption and particularly toxicokinetic data are lacking. However, the endocrine-disrupting activity of BPA and BPS appears comparable. Dermal contact is a significant source of occupational exposure and is the main route during handling of bisphenol-containing receipts by cashiers. Here, percutaneous BPS absorption was investigated and compared to that of BPA. Experiments were performed according to OECD guidelines. Test compounds dissolved in a vehicle - acetone, artificial sebum or water - were applied in vitro to fresh human skin samples in static Franz diffusion cells. Flux, cumulative absorbed dose and distribution of dose recovered were measured. BPA absorption was vehicle-dependent ranging from 3% with sebum to 41% with water. BPS absorption was much lower than BPA absorption whatever the vehicle tested (less than 1% of applied dose). However, depending on the vehicle 20% to 47% of the applied BPS dose remained in the skin, and was consequently potentially absorbable. Both BPA and BPS were mainly absorbed without biotransformation. Taken together, these results indicate that workers may be exposed to BPS through skin when handling products containing it. This exposure is of concern as its toxicity is currently incompletely understood. Hydroponic experiments with different cadmium (Cd) concentrations were conducted to explore the impacts of nutrient allocation on the Cd enrichment of Bermuda grass. The results demonstrated with the Cd concentration increase, the accumulation of nitrogen (N), phosphorus (P) and potassium (K) in roots, stems and leaves increased first and then decreased, while the accumulation of Cd had no significant difference. The biomass and N, P and K accumulation of CD1 and CD2 were significantly different from those of CD3 and CD4, but there was no significant difference in Cd accumulation. The root N, P and K distribution ratio of CD4 increased by 47.9%, 114.3% and 64.3% compared with those of CD2 treatment, the values of stem decreased by 29.4%, 22.4% and 17.2%, and the values of leaves increased by 15.8%, 19.8% and 23.6% respectively. The K ratio of root and leaf increased and that of stem decreased. Cd reduced N and K distribution ratio of stem and increased N and K distribution ratio of root and leaf. Pearson correlation analysis showed that the accumulation of N, P and K in stems was positively correlated with the accumulation of Cd in stems, and the accumulation of N, P and K in roots, stems and leaves were positively correlated with the Cd accumulation in leaves. link3 Bermuda grass can schedule the nutrient allocation to adapt to the Cd absorption and enrichment in different organs under different Cd concentrations. In conclusion, nutrient allocation might affect the Cd accumulation of Bermuda grass. Hydrophilic VOCs (volatile organic compounds) were applied to explore their positive influence on the elimination of the single hydrophobic VOC in biotrickling filters (BTFs). Comparison experiments were carried to evaluate the effect of 4-methyl-2-pentanone and toluene on the performance of BTFs for n-hexane removal. The results showed that the existence of 4-methyl-2-pentanone improved the removal performance of BTFs at short gas empty bed contact time (EBRT) of 15 s and low temperature of 10 °C. The degradation of n-hexane in the presence of 4-methyl-2-pentanone was slightly enhanced with a loading ratio of 61. When the mixing ratio was greater than 4, toluene significantly promoted the biodegradation of n-hexane with toluene loading rate less than 10 g m-3 h-1. Additionally, The promotion effect was not only reflected in the contents of proteins and polysaccharides, but also in the growth rates of microorganisms in biofilms. This work discussed the detailed effect between n-hexane and hydrophilic VOCs in BTFs, which would contribute to develop a more economical method to improve the removal performance of hydrophobic VOCs in BTFs.
Read More: https://www.selleckchem.com/products/Etopophos.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team