Notes
Notes - notes.io |
A bioaccumulation study of 16 emerging contaminants including preservatives, UV-filters, biocides, alkylphenols, anionic surfactants and plasticizers, in Holothuria tubulosa Gmelin, 1791 specimens was developed. Water and sediments from their coastal habitat were also analyzed. Sediment-water distribution coefficients (log Kd) were in the range 0.78 to 2.95. A rapid uptake and bioaccumulation of pollutants was found. Compounds were detected in intestine and gonads of H. tubulosa after only eight days of exposure. Field-based bioconcentration (BCF) and biota-sediment accumulation factors (BSAF) were calculated. Log BCF > 1 were obtained for most of the compounds studied, indicating their tendency to accumulate in tissue of H. Tubulosa. BCF values decrease as follow Triclocarban > anionic surfactants > benzophenone 3 > non-ionic surfactants > bisphenol A > parabens. These data provide a detailed accounting of the distribution patterns of some emerging contaminants in organisms at the lower trophic level, representing a potential source of contaminants for organisms in higher levels of the food chain. Photosynthetic organisms need to respond frequently to the fluctuation of light quality and light quantity in their habitat. In response to the fluctuation of different single wavelength lights, these organisms have to adjust and optimize the employment of light energy by redistributing excitation energy and remodeling photosystem stoichiometry or light complex structure. However, the response of whole cellular processes to fluctuations in single wavelength light is mostly unknown. Here, we report the transcriptomic and proteomic dynamics and metabolic adaptation mechanisms of Nannochloropsis oceanica to blue and red light. Preferential exposure to different light spectra induces massive reprogramming of the Nannochloropsis transcriptome and proteome. Combined with physiological and biochemical investigation, the rewiring of many cellular processes was observed, including carbon/nitrogen assimilation, photosynthesis, chlorophyll and cartenoid biosynthesis, reactive oxygen species (ROS) scavenging systems, and chromatin state regulation. A strong and rapid regulation of genes or proteins related to nitrogen metabolism, photosynthesis, chlorophyll synthesis, ROS scavenging system, and carotenoid metabolism were observed during 12 h and 24 h of exposure under red light. Additionally, two light harvesting complex proteins induced by blue light and one by red light were observed. The differential responses of N. oceanica to red and blue irradiation reveal how marine microalgae adapt to change in light quality and can be exploited for biofuel feedstock development. Sodium dimethyldithiocarbamate (SDDC) is a widely used heavy metal chelating agent in harmless treatment of wastewater and hazardous waste, but SDDC and its heavy metal chelates may leak into the environment and bring potential ecological risks. In this study, the model organism Caenorhabditis elegans was used to evaluate the toxic effect of SDDC and its heavy metal Cu, Pb chelates. Multiple endpoints were investigated by subacute exposure to SDDC (0.01-100 mg/L) and micro-sized Cu, Pb chelates of SDDC (1-100 mg/L). Our data indicated that the LC50 value of SDDC was 139.39 mg/L (95% Cl 111.03, 174.75 mg/L). In addition, SDDC was found that concentration of 1 mg/L is a safe limit value for nematode C. elegans, and concentration above 1 mg/L caused adverse effects on the survival, growth, locomotion behaviors and reactive oxygen species (ROS) production of exposed nematodes. Furthermore, all tested SDDC-Cu and SDDC-Pb chelates had obviously lower toxic effect than untreated Cu, Pb metals. These two chelates also had a lower toxic effect than SDDC agent due to its more stable structure. Moreover, SDDC-Cu had a higher toxic effect than SDDC-Pb at the same concentration. Thus, our results suggest that SDDC as a kind of chelating agent applied in harmless treatment of heavy metals, the safe addition limit should not be exceeded. Removal of tetracycline antibiotics (TCs) by biochar adsorption is emerging as a cost-effective and environmentally friendly strategy. This study developed a novel pomelo peel derived biochar, which was prepared at 400 °C (BC-400) and 600 °C (BC-600) under nitrogen conditions. To enhance the adsorption capacity, BC-400 was further activated by KOH at 600 °C with a KOH BC-400 ratio of 41. The activated biochar (BC-KOH) displayed a much larger surface area (2457.37 m2/g) and total pore volume (1.14 cm3/g) than BC-400 and BC-600. High adsorption capacity of BC-KOH was achieved for removing tetracycline (476.19 mg/g), oxytetracycline (407.5 mg/g) and chlortetracycline (555.56 mg/g) simultaneously at 313.15 K, which was comparable with other biochars derived from agricultural wastes reported previously. The adsorption data could be fitted by the pseudo-second-order kinetic model and Langmuir isotherm model successfully. The initial solution pH indicated the potential influence of TCs adsorption capacity on BC-KOH. NVP-TNKS656 concentration These results suggest that pore filling, electrostatic interaction and π-π interactions between the adsorbent and adsorbate may constitute the main adsorption mechanism. BC-KOH can be used as a potential adsorbent for removing TCs from swine wastewater effectively, cheaply and in an environmentally friendly way. Cyanobacterial blooms in drinking water are worldwide concern. It is known that pre-oxidation enhanced coagulation can be more efficient at removing algae than traditional coagulation. However, its application is hindered by high oxidant/coagulant consumption and the resultant potential health risk, in the form of algal organic matter (AOM) released during oxidation. To remove the cyanobacteria and meanwhile ensure cell integrity, H2O2/Fe(II) and H2O2/Fe(III), which have been widely used to degrade organic pollutants in waters, are proposed in this study. The removal efficiency of Microcystis aeruginosa (M. aeruginosa) under various oxidant/coagulant dosages, AOM release and cell integrity, as well as floc formation and morphology were investigated with these simultaneous oxidation/coagulation processes. The results show that the removal efficiency was higher than 95% with H2O2/Fe(II) and H2O2/Fe(III) under 100 μmol/L H2O2 and Fe. In addition, neither method was found to damage the algal cells in 50-200 μmol/L H2O2 dosing concentrations. It was also found that AOM, including microcystins (MCs), was well controlled owing to the oxidation of H2O2 or hydroxyl radicals, and in-situ Fe(III) settled down the cells in the processes. Compared with H2O2/Fe(II), H2O2/Fe(III) could remove algae efficiently and control AOM release with lower H2O2 (50 μmol/L) and Fe(III) (80 μmol/L) dosages, which suggests that a low chemical consumption is suitable for this simultaneous oxidation/coagulation processes. This is a promising technology for the removal of algae from drinking water in a clean, economical way. Heteroatoms doping is an important modification method in carbon electrode for CDI technology. In this study, a new facile approach of homogeneous phosphorus doping in carbon matrix was proposed via crosslinking polymerization of m-phenylenediamine and phytic acid. The carbonized composites (NPC) showed the characteristics of phosphorus/nitrogen co-doping with excellent hydrophilicity, high electrochemical performance, lower inner resistance and good cycling stability, far beyond that of carbon without phosphorus doping. Compared with reported similar materials and commercial carbon, the chloride adsorption capacity of NPC used as electrode for deionization capacitors was significantly improved (21.4 mg g-1 in a 500 mg L-1 Cl- solution at 1.2 V). Particularly, based on the charge distribution analysis of phosphorus doping in carbon matrix by using Material Studio calculation, the possible enhanced dichlorination mechanism of the carbon composites as electrode for deionization capacitors was carefully explored. The phosphorus/nitrogen co-doped carbon displayed a promising prospect for chloride removal in the application of CDI technology. V.The rapid population growth in China has increased the demand for limited water, energy and food resources. Because the resource supply is constrained by future uncertainties such as climate change, it is necessary to examine the connections among water, energy and food resources from the perspective of the relevant final demands. Based on an input-output model and structural path analysis, this study aims to explore the hidden connections among water, energy and food resources by identifying important final demands and examine how these resources are embodied in upstream production and downstream consumption processes along the supply chain. The water-energy-food nexus approach in this research identifies where and how these resources intersect in economic sectors. By simultaneously considering the water, energy and food footprints, synergistic effects can be maximized among these resource systems. The results reveal that urban household consumption and fixed capital formation have large impacts on water-energy-food resources. Besides, agriculture, construction and service sectors have the largest water-energy-food footprints. For each resource, we rank the top-20 supply chain paths from the final demands to the upstream production sectors, and six critical supply chain paths are identified as important contributors to the consumption of all these resources. Compared with independent approach to manage water, energy and food resources, the nexus approach identifies the critical linkages of the water, energy and food systems and helps to formulate integrated policies to effectively manage these resources across sectors and actors. Synergistic strategies for conserving water, energy, and food resources can be achieved through avoiding unnecessary waste in end uses and improving resource use efficiency along critical supply chains. This research can help consumers, industries and the government make responsible consumption and production decisions to conserve water, energy and food resources. Adaptive management is the systematic acquisition and application of reliable information to improve natural resource management over time. We have employed an adaptive management framework in the control and monitoring of feral cats (Felis catus) on the Matuwa Indigenous Protected Area over the past 16 years. We used 120 Reconyx PC900 camera-traps and a rapid survey technique called the cat track activity index (TAI) to determine if aerial baiting with Eradicat® was more efficient and/or cost-effective than track baiting plus leg-hold trapping. We found that aerial baiting at $0.54 per percent decrease in cat detections is more cost-effective than track-baiting alone at $0.56 per percent decrease in cat detections. Track baiting plus leg-hold trapping, however, is more cost-effective than aerial baiting alone at reducing the number of feral cats detections at $0.39 per percent decrease in cat detections. Aerial baiting plus trapping was the most effective method of suppressing feral cats in an arid landscape with 97.
Homepage: https://www.selleckchem.com/products/nvp-tnks656.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team