NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Evaluating the particular Impacts involving Selenium Nanospheres, Sodium Selenite, as well as Organic Selenium for the Development Performance, Blood vessels Biochemistry, along with Antioxidative Potential of accelerating Egypr Pullets.
Gambierdiscus and Fukuyoa are genera of toxic dinoflagellates which were mainly considered as endemic to marine intertropical areas, and that are well known as producers of ciguatoxins (CTXs) and maitotoxins (MTXs). Ciguatera poisoning (CP) is a human poisoning occurring after the consumption of fish or more rarely, shellfish containing CTXs. The presence of these microalgae in a coastal area is an indication of potential risk of CP. This study assesses the risk of CP in the Balearic Islands (Western Mediterranean Sea) according to the distribution of both microalgae genera, and the presence of CTX-like and MTX-like toxicity in microalgal cultures as determined by neuro-2a cell based-assay (neuro-2a CBA). Genetic identification of forty-three cultured microalgal strains isolated from 2016 to 2019 revealed that all of them belong to the species G. australes and F. paulensis. Both species were widely distributed in Formentera, Majorca and Minorca. Additionally, all strains of G. australes and two of F. paulensis exhibited signals of CTX-like toxicity ranging respectively between 1 and 380 and 8-16 fg CTX1B equivalents (equiv.) • cell-1. Four extracts of F. paulensis exhibited a novel toxicity response in neuro-2a cells consisting of the recovery of the cell viability in the presence of ouabain and veratridine. In addition, G. australes showed MTX-like toxicity while F. paulensis strains did not. Overall, the low CTX-like toxicities detected indicate that the potential risk of CP in the Balearic Islands is low, although, the presence of CTX-like and MTX-like toxicity in those strains reveal the necessity to monitor these genera in the Mediterranean Sea.Shellfish production is an important activity for the economy of many countries. As well as its direct value, it helps to stabilize communities in rural areas characterized by limited job opportunities. It is also important for consumers who recognize shellfish as a healthy product that gains its nutrition from natural plankton without the need for fertilizers, chemical treatments or other anthropogenic intervention typical of terrestrial agriculture or other marine aquaculture. Nevertheless, global shellfish fisheries are under threat from harmful algal blooms (HABs) and related biotoxins, whose production is potentially exacerbated by global changes. This research provides evidence of economic impacts on Scottish shellfish farms in the last 10 years caused by HABs and their associated biotoxins. In contrast to previous approaches that have focused on variation in production as a function of temporal trends and blooms events, we use a production function approach to show which input factors (labour, capital, climate variables, concentration of biotoxins) have an effect on production. Results show that diarrhoetic shellfish toxins produced by the genera Dinophysis are most significant. A 1% change in the production of these biotoxins reduces shellfish production by 0.66%, with an average yearly negative variation in production of 15% (1,080 ton) and an economic loss (turnover) of £ (GBP) 1.37 m per year (in 2015 currency) over a national annual industry turnover of ~ £ 12 m. The production function approach is coupled with a multivariate time series model (VAR) capturing the statistical relationship between algal concentration, information on climatic variables and biotoxins to forecast the damage to shellfish production from HABs. This provides producers and regulators with the economic information to plan temporal and spatial mitigating measures necessary to limit damages to production by comparing the costs of these measures with the costs of lost production.The phytoplankton Phaeocystis globosa thrives in a wide range of marine regions and plays an important role in climate control. It can also form harmful algal blooms (HABs) that threaten environments and impact important coastal infrastructures. Mechanisms underlying the formation of P. globosa blooms still remain poorly understood. Accumulating evidence suggests that P. https://www.selleckchem.com/products/nbqx.html globosa has high genetic diversity and different P. globosa strains may have differential contributions to the development of P. globosa blooms. However, due to the lack of molecular markers with adequate resolution for distinguishing P. globosa genetic diversity, such differential contributions by different P. globosa strains could not be accurately ascertained. As such, high-resolution molecular markers need to be developed and applied to distinguish P. globosa genetic diversity. In this study, we undertook to define high-resolution molecular marker by assembling and comparing the whole chloroplast genomes of P. globosa strains isolated from different regions of the world. Through comparative analysis of P. globosa cpDNAs and detection of single nucleotide variations (SNVs), a molecular marker pgcp1 with improved resolution was developed. The pgcp1 demonstrated the highest resolution compared with other regions including 18S rDNA V4 region, 28S rDNA D1-D2 region and rbcL region, through genetic distance and phylogenetic analysis of 13 P. globosa strains. Molecular analysis of environmental samples and strains collected in multiple expeditions from a wide range of ocean regions including multiple regions in China, Vietnam, Thailand and Western Pacific using pgcp1 as the molecular marker displayed high genetic diversity of P. globosa with at least four major P. globosa clades. In conclusion, we have developed pgcp1 as a high-resolution molecular marker for the harmful algal bloom species P. globosa, which can be used to track intra-species genetic diversity and dynamics of P. globosa during bloom development.Paralytic Shellfish Poisoning is a potentially fatal syndrome, resulting from the filter-feeding activities of marine molluscs accumulating harmful neurotoxins naturally occurring in microalgae. Outbreaks are well recognised throughout most regions of the world, but with the highest levels of toxicity to date recorded in mussels from Argentina. Whilst toxicity has been documented for selected outbreaks over the years, testing has been conducted using a mouse bioassay. Consequently there is a need to establish baseline data utilising modern chemical detection methods, which also facilitate the quantification of individual toxin analogues, giving useful data on toxin profiles as well as total sample toxicity. In this study, 151 shellfish samples harvested from the marine waters of Argentina between 1980 and 2012 were subjected to analysis by liquid chromatography with fluorescence detection, since Jan 2019 the European Union reference method for PSP determination. Total PST concentrations were found to vary enohe relationships between toxicity, toxin profile, source phytoplankton and other environmental factors.Wind-driven wave disturbance is one of the environmental factors that shapes the formation of Microcystis blooms. Here we present data on the effect of different disturbance modes (continuous vs intermittent disturbances) on colony size, biomass and dominance of Microcystis in Lake Taihu under field conditions. Small submersible pumps were used to simulate different disturbance modes at turbulent dissipation rate (ε) of 2.98 × 10-6 m2 s-3. Our results show that the mean colony sizes of Microcystis in intermittent and continuous disturbance group were 1.94 and 1.23 times that of the control group, respectively. The mean densities of Microcystis in intermittent and continuous disturbance group were 4.23 and 2.91 times that of the control group, respectively. The mean proportion of Microcystis to total algae abundance in control group and continuous disturbance group changed from 78.3% at beginning of the experiment to 4.5% and 9.1% at the end of the experiment. However, the proportion of Microcystis to total algae cells in intermittent disturbance group was 65.7-94.3% during the whole experiment. The results demonstrated intermittent disturbances favored colony morphology, biomass and dominance of Microcystis. Our results suggested that intermittent disturbance benefited the formation of Microcystis bloom and was important in the development of predictive models for toxic cyanobacterial blooms under changing climates in shallow lakes.In this study, a novel detection method by PCR-based dot chromatography strip (PDCS) is proposed. To investigate the application of PDCS in the detection of harmful microalgae, the internal transcribed spacer sequence of Karlodinium veneficum, one of the most common bloom-forming species, was cloned and sequenced to design and screen specific primers with tag sequences and probes, including gold nanoparticle probe, test probe, and control probe. The PDCS was prepared manually, and PCR amplicons prepared from the genomic DNA of K. veneficum using tagged specific primers were analyzed by PDCS for visual detection of the target species. The resulting test strip showed red spots at the predicted test and control points visible to the naked eyes, showing the successful development of PDCS. This detection technique is independent of expensive experimental equipment (except a DNA thermal cycler for PCR) but requires an aliquot of PCR amplicons mixed with development buffer to apply to the sample pad of PDCS for approximately 10 min to visualize the analytical results. Cross-reactivity test with 21 microalgae, including K. veneficum, showed that the established PDCS technique has excellent specificity. The detection limit of PDCS was 9.13 × 10-2 ng μL-1 for genomic DNA and 5.3 × 105 cells L - 1 for crude DNA extracts of the target alga. In summary, the PDCS with high sensitivity and specificity can be prepared by hand, which is less expensive than traditional strip, thus providing a promising alternative to the detection of K. veneficum in natural samples.Photosynthetic species of the dinoflagellate genus Dinophysis are known to retain temporary cryptophyte plastids of the Teleaulax/Plagioselmis/Geminigera clade after feeding the ciliate Mesodinium rubrum. In the present study, partial plastid 23S rDNA sequences were retrieved in Southern Chilean waters from oceanic (Los Lagos region), and fjord systems (Aysén region), in single cells of Dinophysis and accompanying organisms (the heliozoan Actinophrys cf. sol and tintinnid ciliates), identified by means of morphological discrimination under the light microscope. All plastid 23S rDNA sequences (n = 23) from Dinophysis spp. (Dinophysis acuta, D. caudata, D. tripos and D. subcircularis) belonged to cryptophytes from clade V (Rhinomonas, Rhodomonas and Storeatula), although they could not be identified at genus level. Moreover, five plastid sequences obtained from heliozoans (Actinophryida, tentatively identified as Actinophrys cf. sol), and tintinnid ciliates, grouped together with those cryptophyte sequences. In contrast, two additional sequences from tintinnids belonged to other taxa (chlorophytes and cyanobacteria). Overall, the present study represents the first time that red cryptophyte plastids outside of the Teleaulax/Plagioselmis/Geminigera clade dominate in wild photosynthetic Dinophysis spp. These findings suggest that either Dinophysis spp. are able to feed on other ciliate prey than Mesodinium and/or that cryptophyte plastids from clade V prevail in members of the M. rubrum species complex in the studied area.
Read More: https://www.selleckchem.com/products/nbqx.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.