NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Hi: increased neural system architectures and also methods regarding modest alternative calling.
Bacteria of the genus Gordonia are rarely involved in human infections. We report here the case of a 30-year-old man from Guinea Buissau with mycetoma of the foot. 16S DNA sequencing after surgical biopsy identified Gordonia westfalica. To our knowledge, this is the first report of human infection caused by G. westfalica. © 2020 The Authors.Dialister massiliensis strain Marseille-P5638T (= CSUR P5638) is a new species from the genus Dialister and family Veillonellaceae which was isolated from the gut microbiota of a healthy individual. © 2020 The Author(s).There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention. © 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology Inc.Several software tools are available that can assess the performance of nonrevenue water (NRW) in water distribution networks and plan for reduction measures. Of the 21 tools that have been reported in the literature, 12 are freely available. The creation of these many tools and different versions of each individual tool indicates the promising future of NRW software development. This review comprises 12 freely available tools for water balance establishment, NRW performance assessment, and NRW reduction planning. Most of the tools have been developed to establish standard annual water balances and recommended performance indicators (PIs) for the entire network. Some tools have been developed to intervene and reduce the leakage in a district metered area. Key features increasingly being included in NRW software include uncertainty analysis, recognition of supply intermittency, and accommodation of a guidance matrix and benchmarks. Leakage assessment is fully recognized, and leakage reduction analyses are increasingly growing in the software tools. However, much less attention has been paid to assessing and options for reducing apparent losses. Although a comprehensive NRW management tool for monitoring, planning, and intervention is not currently available, developing a comprehensive tool is worthwhile, in the form of one package or a kit of smaller tools. Toward this goal, the article provides insights and recommendations addressing topics of intermittency, normalization, multi-method assessment, planning for the reduction of apparent and real losses, and estimation of the economic level of water loss. This article is categorized underEngineering Water > Planning WaterEngineering Water > Methods. © 2020 The Authors. WIREs Water published by Wiley Periodicals, Inc.Introduction Mastalgia is a common condition that may affect up to two-thirds of patients during the reproductive period. It can be divided into cyclical and noncyclical. It is mostly due to benign causes, but breast cancer should be excluded. It may be associated with a high level of stress and anxiety. Patients need to be assessed fully, breast and general examinations, and investigations such as breast imaging and hormonal assay. Patients and methods This is a prospective study that was done in the breast clinic in the period between February 2019 and July 2019. A total number of 445 patients with mastalgia included were in the study. Patients were examined and evaluated using various imaging modalities. Results The mean age of the patients was 34 years. Mastalgia was present in 54.2% of our patients, in about 70.1% of our patients it was noncyclical mastalgia. Mastalgia was positively correlated with smoking, oral contraceptive pills, and positive family history of breast cancer (p values 0.000, 0.009, and 0.000) respectively with no correlation with other factors. The type of pain was less in women having early first pregnancy and with the site of the pain showed a positive correlation with the type of pain, (p values 0.001 and 0.000) respectively. Conclusion Mastalgia is a common complaint which may affect most females. It is caused by benign breast disorders in the majority of patients. A systematic approach must be followed for the management of mastalgia. Reassurance, regular exercise, and local analgesics may be very effective initial measures. In severe, intractable cases, hormonal therapy may be used. © 2020 The Author(s).Nonlinear frequency conversion is a ubiquitous technique that is used to obtain broad-range lasers and supercontinuum coherent sources. The phase-matching condition (momentum conservation relation) is the key criterion but a challenging bottleneck in highly efficient conversion. Birefringent phase matching (BPM) and quasi-phase matching (QPM) are two feasible routes but are strongly limited in natural anisotropic crystals or ferroelectric crystals. Therefore, it is in urgent demand for a general technique that can compensate for the phase mismatching in universal nonlinear materials and in broad wavelength ranges. Here, an additional periodic phase (APP) from order/disorder alignment is proposed to meet the phase-matching condition in arbitrary nonlinear crystals and demonstrated from the visible region to the deep-ultraviolet region (e.g., LiNbO3 and quartz). Remarkably, pioneering 177.3-nm coherent output is first obtained in commercial quartz crystal with an unprecedented conversion efficiency above 1‰. This study not only opens a new roadmap to resuscitate those long-neglected nonlinear optical crystals for wavelength extension, but also may revolutionize next-generation nonlinear photonics and their further applications. © The Author(s) 2020.Poor stability has long been one of the key issues that hinder the practical applications of lead-based halide perovskites. In this paper, the photoluminescence (PL) quantum yield (QY) of bromide-based perovskites can be increased from 2.5% to 71.54% by introducing water, and the PL QY of a sample in aqueous solution decreases minimally over 1 year. The enhanced stability and PL QY can be attributed to the water-induced methylamino lead bromide perovskite (MAPbBr3)@PbBr(OH). We note that this strategy is universal to MAPbBr3, formamidine lead bromide perovskite (FAPbBr3), inorganic lead bromide perovskite (CsPbBr3), etc. Light-emitting devices (LEDs) are fabricated by using the as-prepared perovskite as phosphors on a 365 nm UV chip. The luminance intensity of the LED is 9549 cd/m2 when the driven current is 200 mA, and blemishes on the surface of glass are clearly observed under the illumination of the LEDs. This work provides a new strategy for highly stable and efficient perovskites. © The Author(s) 2020.Continuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum well nanowire laser structures, revealing high Q-factors of 1250 ± 90 corresponding to end-facet reflectivities of R = 0.73 ± 0.02. By using optimised direct-indirect band alignment in the active region, we demonstrate a well-refilling mechanism providing a quasi-four-level system leading to multi-nanosecond lasing and record low room temperature lasing thresholds (~6 μJ cm-2 pulse-1) for III-V nanowire lasers. Our findings demonstrate a highly promising new route towards continuously operating silicon-integrated nanolaser elements. © The Author(s) 2020.By integrating a free-standing cadmium sulfide (CdS) nanowire onto a silicon nitride (SiN) photonic chip, we demonstrate a highly compact on-chip single-mode CdS nanowire laser. The mode selection is realized using a Mach-Zehnder interferometer (MZI) structure. When the pumping intensity exceeds the lasing threshold of 4.9 kW/cm2, on-chip single-mode lasing at ~518.9 nm is achieved with a linewidth of 0.1 nm and a side-mode suppression ratio of up to a factor of 20 (13 dB). The output of the nanowire laser is channelled into an on-chip SiN waveguide with high efficiency (up to 58%) by evanescent coupling, and the directional coupling ratio between the two output ports can be varied from 90 to 10% by predesigning the coupling length of the SiN waveguide. Our results open new opportunities for both nanowire photonic devices and on-chip light sources and may pave the way towards a new category of hybrid nanolasers for chip-integrated applications. © The Author(s) 2020.Nanoscale surface texturing, drilling, cutting, and spatial sculpturing, which are essential for applications, including thin-film solar cells, photonic chips, antireflection, wettability, and friction drag reduction, require not only high accuracy in material processing, but also the capability of manufacturing in an atmospheric environment. Widely used focused ion beam (FIB) technology offers nanoscale precision, but is limited by the vacuum-working conditions; therefore, it is not applicable to industrial-scale samples such as ship hulls or biomaterials, e.g., cells and tissues. Here, we report an optical far-field-induced near-field breakdown (O-FIB) approach as an optical version of the conventional FIB technique, which allows direct nanowriting in air. The writing is initiated from nanoholes created by femtosecond-laser-induced multiphoton absorption, and its cutting "knife edge" is sharpened by the far-field-regulated enhancement of the optical near field. A spatial resolution of less than 20 nm (λ/40, with λ being the light wavelength) is readily achieved. O-FIB is empowered by the utilization of simple polarization control of the incident light to steer the nanogroove writing along the designed pattern. GSK467 cell line The universality of near-field enhancement and localization makes O-FIB applicable to various materials, and enables a large-area printing mode that is superior to conventional FIB processing. © The Author(s) 2020.Topological physics mainly arises as a necessary link between properties of the bulk and the appearance of surface states, and has led to successful discoveries of novel topological surface states in Chern insulators, topological insulators, and topological Fermi arcs in Weyl, Dirac, and Nodal line semimetals owing to their nontrivial bulk topology. In particular, topological phases in non-Hermitian systems have attracted growing interests in recent years. In this work, we predict the emergence of the topologically stable nodal disks where the real part of the eigen frequency is degenerate between two bands in non-ideal magnetohydrodynamics plasma with collision and viscosity dissipations. Each nodal disk possesses continuously distributed topological surface charge density that integrates to unity. It is found that the lossy Fermi arcs at the interface connect to the middle of the projection of the nodal disks. We further show that the emergence, coalescence, and annihilation of the nodal disks can be controlled by plasma parameters and dissipation terms.
Website: https://www.selleckchem.com/products/gsk467.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.