Notes
![]() ![]() Notes - notes.io |
The successful use of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires development of novel ECL signal probes. Herein, we report lanthanide (Ln) metal-organic frameworks (LMOFs) as ECL signal emitters in the ECL immunoassay. The LMOFs were prepared from precursors containing Eu (III) ions and 5-boronoisophthalic acid (5-bop), which could be utilized to adjust optical properties. Investigations of ECL emission mechanisms revealed that 5-bop was excited with ultraviolet photons to generate a triplet-state, which then triggered Eu (III) ions for red emission. The electron-deficient boric acid decreased the energy-transfer efficiency from the triplet-state of 5-bop to Eu (III) ions; consequently, both were excited with high-efficiency at single excitation. In addition, by progressively tailoring the atomic ratios of Ni/Fe, NiFe composites (Ni/Fe 11) were synthesized with more available active sites, enhanced stability, and excellent conductivity. As a result, the self-luminescent europium LMOFs displayed excellent performance characteristics in an ECL immunoassay with a minimum detectable limit of 0.126 pg mL-1, using Cytokeratins21-1 (cyfra21-1) as the target detection model. The probability of false positive/false negative was reduced dramatically by using LMOFs as signal probes. This proposed strategy provides more possibilities for the application of lanthanide metals in analytical chemistry, especially in the detection of other disease markers.The separation of ethylene (C2H4) from C2 hydrocarbons is considered as one of the most difficult and important processes in the petrochemical industry. Heat-driven cryogenic distillation is still widely used in the C2 hydrocarbons separation realms, which is an energy intensive process and takes up immense space. In response to a greener, more energy-efficient sustainable development, we successfully synthesized a multifunction microporous Mg-based MOF [Mg2(TCPE)(μ2-OH2)(DMA)2]·solvents (NUM-9) with C2H6/C2H2 selectivity based on a physical adsorption mechanism, and with outstanding stability; especially, it is stable up to 500 °C under an air atmosphere. NUM-9a (activated NUM-9) shows good performances in the separation of C2H6/C2H2 from raw ethylene gases. In addition, its actual separation potential is also examined by IAST and dynamic column breakthrough experiments. Zasocitinib concentration GCMC calculation results indicate that the unique structure of NUM-9a is primarily conducive to the selective adsorption of C2H6 and C2H2. More importantly, compared with C2H4, NUM-9a prefers to selectively adsorb C2H6 and C2H2 simultaneously, which makes NUM-9a as a sorbent have the capacity to separate C2H4 from C2 hydrocarbon mixtures under mild conditions through a greener and energy-efficient separation strategy.Flexible and high-performance batteries are urgently required for powering flexible/wearable electronics. Lithium-sulfur batteries with a very high energy density are a promising candidate for high-energy-density flexible power source. Here, we report flexible lithium-sulfur full cells consisting of ultrastable lithium cloth anodes, polysulfone-functionalized separators, and free-standing sulfur/graphene/boron nitride nanosheet cathodes. The carbon cloth decorated with lithiophilic three-dimensional MnO2 nanosheets not only provides the lithium anodes with an excellent flexibility but also limits the growth of the lithium dendrites during cycling, as revealed by theoretical calculations. Commercial separators are functionalized with polysulfone (PSU) via a phase inversion strategy, resulting in an improved thermal stability and smaller pore size. Due to the synergistic effect of the PSU-functionalized separators and boron nitride-graphene interlayers, the shuttle of the polysulfides is significantly inhibited. Because of successful control of the shuttle effect and dendrite formation, the flexible lithium-sulfur full cells exhibit excellent mechanical flexibility and outstanding electrochemical performance, which shows a superlong lifetime of 800 cycles in the folded state and a high areal capacity of 5.13 mAh cm-2. We envision that the flexible strategy presented herein holds promise as a versatile and scalable platform for large-scale development of high-performance flexible batteries.Organic selenides are famous for their coordination and catalytic functions in the organic phase, albeit challenging for aqueous medium. Herein, the combination of a hydrophilic body of crown ether and substitution of one oxygen atom with a selenium one provides a new type of design route for organic selenide entities with charming functions in aqueous solution. The selenacrown ether C9Se presented here intrinsically shows an amphiphile-like property. Its nanosphere structure in water readily expands the catalysis of organic selenide to aqueous substrates in thiol/disulfide conversion.Chemical control of cell-cell interactions using synthetic materials is useful for a wide range of biomedical applications. Herein, we report a method to regulate cell adhesion and dispersion by introducing repulsive forces to live cell membranes. To induce repulsion, we tethered amphiphilic polymers, such as cholesterol-modified poly(ethylene glycol) (PEG-CLS), to cell membranes. We found that the repulsive forces introduced by these tethered polymers induced cell detachment from a substrate and allowed cell dispersion in a suspension, modulated the speed of cell migration, and improved the separation of cells from tissues. Our analyses showed that coating the cells with tethered polymers most likely generated two distinct repulsive forces, lateral tension and steric repulsion, on the surface, which were tuned by altering the polymer size and density. We modeled how these two forces are generated in kinetically distinctive manners to explain the various responses of cells to the coating. Collectively, our observations demonstrate mechanochemical regulation of cell adhesion and dispersion by simply adding polymers to cells without genetic manipulation or chemical synthesis in the cells, which may contribute to the optimization of chemical coating strategies to regulate various types of cell-cell interacting systems.
My Website: https://www.selleckchem.com/products/zasocitinib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team