Notes
![]() ![]() Notes - notes.io |
A mutation from Asp to Tyr at position 97 of PfFd was recently reported to be strongly associated with P. falciparum resistance to artemisinin, the front line anti-malarial drug. Thus, the enhanced interaction of PfFd D97Y protein with PfFNR could be involved in artemisinin resistance of human malaria parasites.Spring drought is becoming a frequently occurring stress factor in temperate forests. However, the understanding of tree resistance and resilience to the spring drought remains insufficient. In this study, European beech seedlings at the early stage of leaf development were moderately and severely drought stressed for one month and then subjected to a two-week recovery period after rewatering. The study aimed to disentangle the complex relationships between leaf gas exchange, vascular anatomy, tree morphology, and patterns of biomass allocation. Stomatal conductance decreased by 80% and 85% upon moderate and severe drought stress, respectively, which brought along a decline in net photosynthesis. However, drought did not affect the indices of slow chlorophyll fluorescence, indicating no permanent damage to the light part of the photosynthetic apparatus. Stem hydraulic conductivity decreased by more than 92% at both drought levels. selleck inhibitor Consequently, the cambial activity of stressed seedlings declined, which led to lower stem biomass, reduced tree ring width, and a lower number of vessels in the current tree ring, these also with smaller dimensions. In contrast, the petiole structure was not affected, but at the cost of reduced leaf biomass. Root biomass was reduced only by severe drought. After rewatering, the recovery of gas exchange and re-growth of the current tree-ring were observed, all delayed by several days and by lower magnitudes in severely stressed seedlings. The reduced stem hydraulic conductivity inhibited the recovery of gas exchange, but xylem function started to recover by re-growth and refilling of embolised vessels. Despite the damage to conductive xylem, no mortality occurred. These results suggest the low resistance but high resilience of European beech to spring drought. Nevertheless, beech resilience could be weakened if the period between drought events is short as the recovery of severely stressed seedlings took longer time than 14 days.Background In cancer cells, fusion genes can produce linear and chimeric fusion-circular RNAs (f-circRNAs), which are functional in gene expression regulation and implicated in malignant transformation, cancer progression, and therapeutic resistance. For specific cancers, proteins encoded by fusion transcripts have been identified as innovative therapeutic targets (e.g., EML4-ALK). Even though RNA sequencing (RNA-Seq) technologies combined with existing bioinformatics approaches have enabled researchers to systematically identify fusion transcripts, specifically detecting f-circRNAs in cells remains challenging owing to their general sparsity and low abundance in cancer cells but also owing to imperfect computational methods. Results We developed the Python-based workflow "Fcirc" to identify fusion linear and f-circRNAs from RNA-Seq data with high specificity. We applied Fcirc to 3 different types of RNA-Seq data scenarios (i) actual synthetic spike-in RNA-Seq data, (ii) simulated RNA-Seq data, and (iii) actual cancer cell-derived RNA-Seq data. Fcirc showed significant advantages over existing methods regarding both detection accuracy (i.e., precision, recall, F-measure) and computing performance (i.e., lower runtimes). Conclusion Fcirc is a powerful and comprehensive Python-based pipeline to identify linear and circular RNA transcripts from known fusion events in RNA-Seq datasets with higher accuracy and shorter computing times compared with previously published algorithms. Fcirc empowers the research community to study the biology of fusion RNAs in cancer more effectively.Wild primates face grave conservation challenges, with habitat loss and climate change projected to cause mass extinctions in the coming decades. As large-bodied Neotropical primates, mantled howling monkeys (Alouatta palliata) are predicted to fare poorly under climate change, yet are also known for their resilience in a variety of environments, including highly disturbed habitats. We utilized ecophysiology research on this species to determine the morphological, physiological, and behavioral mechanisms howlers employ to overcome ecological challenges. Our data show that howlers at La Pacifica, Costa Rica are capable of modifying body size. Howlers displayed reduced mass in warmer, drier habitats, seasonal weight changes, frequent within-lifetime weight fluctuations, and gradual increases in body mass over the past four decades. These within-lifetime changes indicate a capacity to modify morphology in a way that can impact animals' energetics and thermodynamics. Howlers are also able to consume foods with a f active management and selective cultivation to yield large, interconnected forest fragments with targeted phenology that provides both a complex physical structure and a diversity of food sources. These steps could assist howlers in using their natural acclimation potential to survive future conservation threats.The COVID-19 pandemic and the response to the pandemic are combining to produce a tidal wave of need for rehabilitation. Rehabilitation will be needed for survivors of COVID-19, many of whom are older, with underlying health problems. In addition, rehabilitation will be needed for those who have become deconditioned as a result of movement restrictions, social isolation, and inability to access healthcare for pre-existing or new non-COVID-19 illnesses. Delivering rehabilitation in the same way as before the pandemic will not be practical, nor will this approach meet the likely scale of need for rehabilitation. This commentary reviews the likely rehabilitation needs of older people both with and without COVID-19 and discusses how strategies to deliver effective rehabilitation at scale can be designed and implemented in a world living with COVID-19.Background Phlebotomy plays a key role in clinical laboratory medicine but poses certain challenges for the patient and the laboratory. Dried blood spots simplify collection and stabilize specimens effectively, but clinical reference intervals are based primarily on serum or plasma. We evaluated use of dried separated blood plasma specimens to simplify plasma sample collection via finger stick; however, this sampling technique posed substantial analytical challenges. We discuss herein our efforts to overcome these challenges and provide accurate and precise clinical measurements. Methods Microsamples of whole blood were collected via finger stick using a collection device employing laminar-flow separation of cellular blood and plasma fractions with subsequent desiccation. Samples were analyzed on modern autoanalyzers with FDA-approved reagent and calibration systems, as well as commercially available reagents with laboratory-developed assay parameters. Measured analyte concentrations from extracted dried plasma samples were normalized to a coextracted endogenous analyte, chloride. Results Chloride normalization reduced variability incurred through extraction and undefined plasma volume. Excellent correlation of normalized measurements from dried finger-stick samples (whole blood and plasma) versus matched venous samples facilitated developing mathematical transformations to provide concordance between specimen types. Independent end-to-end performance verification yielded mean biases less then 3% for the 5 analytes evaluated relative to venous drawn samples analyzed on FDA-approved measurement systems. Conclusion Challenges inherent with this microsampling technique and alternate sample matrix were obviated through capabilities of modern autoanalyzers and implementation of chloride normalization. These results demonstrate that self-collected microsamples from a finger stick can give results concordant with those of venous samples.Objectives Theories of aging posit that older adult age is associated with less negative emotions, but few studies have examined age differences at times of novel challenges. As COVID-19 spread in the United States, this study therefore aimed to examine age differences in risk perceptions, anxiety and depression. Method In March 2020, a nationally representative address-based sample of 6666 US adults assessed their perceived risk of getting COVID-19, dying if getting it, getting quarantined, losing their job (if currently working), and running out of money. They completed a mental health assessment for anxiety and depression. Demographic variables and pre-crisis depression diagnosis had previously been reported. Results In regression analyses controlling for demographic variables and survey date, older adult age was associated with perceiving larger risks of dying if getting COVID-19, but with perceiving less risk of getting COVID-19, getting quarantined, or running out of money, as well as less depression and anxiety. Findings held after additionally controlling for pre-crisis reports of depression diagnosis. Discussion With the exception of perceived infection-fatality risk, US adults who were relatively older appeared to have a more optimistic outlook and better mental health during the early stages of the pandemic. Interventions may be needed to help people of all ages maintain realistic perceptions of the risks, while also managing depression and anxiety during the COVID-19 crisis. Implications for risk communication and mental health interventions are discussed.Motivation As the COVID-19 pandemics is spreading around the world, the SARS-CoV-2 virus is evolving with mutations that potentially change and fine-tune functions of the proteins coded in its genome. Results Coronavirus3D website integrates data on the SARS-CoV-2 virus mutations with information about 3D structures of its proteins, allowing users to visually analyze the mutations in their 3D context. Availability Coronavirus3D server is freely available at https//coronavirus3d.org.Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion and are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless prenecked invasive species populations and in populations using a bet-hedging strategy.Epigenetics represents a widely accepted set of mechanisms for how organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, i) respond to temperature and regulate thermal stress responses in different kingdoms of life, ii) regulate temperature-dependent expression of key developmental processes and seasonal phenotypes, iii) facilitate transgenerational epigenetic inheritance of thermal adaptation, iv) adapt populations to local and global climate gradients and finally v) facilitate in biological invasions.
Homepage: https://www.selleckchem.com/products/msdc-0160.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team