Notes
Notes - notes.io |
rarily to what has been described by some authors, in our experience, we have not observed an increase of RI in IHs treated with oral propranolol.Airway infantile hemangiomas (IHs) can represent a life-threatening condition since the first months of life. They may be isolated or associated to cutaneous IHs, and/or part of PHACES syndrome. Diagnosis, staging, and indication to treatment are not standardized yet despite the presence in the literature of previous case series and reviews. The diagnosis might be misleading, especially in the absence of cutaneous lesions. Airway endoscopy is the gold standard both for diagnosis and follow-up since it allows evaluation of precise localization and entity of obstruction and/or stricture. Proliferation of IH in the infant airways manifests frequently with stridor and treatment is required as soon as possible to prevent further complications. The first line of therapy is oral propranolol, but duration of treatment is not yet well-defined. All considered, we report the experience of our multidisciplinary center from 2009 to date, on 36 patients affected by airway IHs, and successfully treated with oral propranolol. Thus, the authors propose their experience for the management of airway IHs, specifically early diagnosis, when to perform endoscopy, how to interpret its findings, and when to stop the treatment.[This corrects the article DOI 10.3389/fcimb.2020.603457.].Emerging evidence has revealed the presence in animals of a bidirectional regulatory "lung-gut axis" that provides resistance to respiratory infections. Clues to the existence of this system stem from observations that respiratory infections are often accompanied by gastrointestinal symptoms, whereby intestinal microbiota appear to play pivotal roles in combating pathogenic infections. Importantly, short-chain fatty acids (SCFAs) produced by the gut microbiota appear to serve as the biological link between host immune defenses and gut flora. Streptococcus pneumoniae (S.pn), the main cause of lower respiratory tract infections, is involved in more than 1.189 million deaths per year. QingFei Yin (QFY) is known for its excellent therapeutic efficacy in combating bacterial lung infections. In this study, effects of S.pn infection on gut homeostasis were assessed using 16S RNA-based microbiota community profiling analysis. In addition, potential mechanisms underlying QFY recipe beneficial therapeutic effects against bacterial pneumonia were explored using S.pn-infected gut microbiota-depleted mice. Results of data analysis indicated that QFY treatment alleviated lung infection-associated pathogenic processes, while also promoting repair of disordered gut flora and counteracting S.pn infection-associated decreases in levels of SCFAs, particularly of acetate and butyrate. Mechanistically, QFY treatment suppressed inflammatory lung injury through inhibition of the host NF-κB-NLRP3 pathway. These results inspired us to identify precise QFY targets and mechanisms underlying QFY anti-inflammatory effects. In addition, we conducted an in-depth evaluation of QFY as a potential treatment for bacterial pneumonia.The diagnosis of endometriosis is typically delayed by years for the unexclusive symptom and the traumatic diagnostic method. Several studies have demonstrated that gut microbiota and cervical mucus potentially can be used as auxiliary diagnostic biomarkers. However, none of the previous studies has compared the robustness of endometriosis classifiers based on microbiota of different body sites or demonstrated the correlation among microbiota of gut, cervical mucus, and peritoneal fluid of endometriosis, searching for alternative diagnostic approaches. Herein, we enrolled 41 women (control, n = 20; endometriosis, n = 21) and collected 122 well-matched samples, derived from feces, cervical mucus, and peritoneal fluid, to explore the nature of microbiome of endometriosis patients. Our results indicated that microbial composition is remarkably distinguished between three body sites, with 19 overlapped taxa. Moreover, endometriosis patients harbor distinct microbial communities versus control group especially in feces and peritoneal fluid, with increased abundance of pathogens in peritoneal fluid and depletion of protective microbes in feces. Particularly, genera of Ruminococcus and Pseudomonas were identified as potential biomarkers in gut and peritoneal fluid, respectively. click here Furthermore, novel endometriosis classifiers were constructed based on taxa selected by a robust machine learning method. These results demonstrated that gut microbiota exceeds cervical microbiota in diagnosing endometriosis. Collectively, this study reveals important insights into the microbial profiling in different body sites of endometriosis, which warrant future exploration into the role of microbiota in endometriosis and highlighted values on gut microbiota in early diagnosis of endometriosis.High-risk human papillomavirus (hrHPV) infection and integration were considered as essential onset factors for the development of cervical cancer. However, the mechanism on how hrHPV integration influences the host genome structure remains not fully understood. link2 In this study, we performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing, chromatin immunoprecipitation and sequencing (ChIP-seq), and RNA-sequencing (RNA-seq) in two cervical cells, 1) NHEK normal human epidermal keratinocyte; and 2) HPV16-integrated SiHa tumorigenic cervical cancer cells. Our results reveal that the HPV-LINC00393 integrated chromosome 13 exhibited significant genomic variation and differential gene expression, which was verified by calibrated CTCF and H3K27ac ChIP-Seq chromatin restructuring. Importantly, HPV16 integration led to differential responses in topologically associated domain (TAD) boundaries, with a decrease in the tumor suppressor KLF12 expression downstream of LINC00393. Overall, this study provides significant insight into the understanding of HPV16 integration induced 3D structural changes and their contributions on tumorigenesis, which supplements the theory basis for the cervical carcinogenic mechanism of HPV16 integration.
The etiology of periodontitis remains unclear, as is the place of gingivitis in its pathophysiology. A few studies linked the colonization by oral parasites (
and
) to periodontal disease and its severity. The aim of the current study was to estimate the prevalence of these oral parasites among healthy individuals, and in patients with gingivitis and periodontitis in Jordan.
The study was conducted during July 2019-December 2019. Samples were composed of saliva and periodontal material including dental plaque sampled with probes. The detection of oral parasites was done using conventional polymerase chain reaction (PCR).
The total number of study participants was 237 healthy (n=94), gingivitis (n=53) and periodontitis (n=90). The prevalence of
was 88.9% among the periodontitis patients, 84.9% among the gingivitis patients and 47.9% in the healthy group. For
, the prevalence was 25.6% among the periodontitis patients, 5.7% among the gingivitis patients and 3.2% in the heathy group. Positivity fomensals needs to be re-evaluated and their contribution to pathophysiology of periodontal diseases cannot be neglected.
The higher prevalence of human oral parasites in periodontal disease compared to healthy individuals appears to be more than a mere marker for the disease and might also be associated with disease severity and potential for progression. Thus, the dogmatic view of E. gingivalis and T. tenax as commensals needs to be re-evaluated and their contribution to pathophysiology of periodontal diseases cannot be neglected.Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributothat may evolve to address significant gaps in the foundational knowledge of periodontal disease.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and has infected more than 250 million people. A typical feature of COVID-19 is the lack of type I interferon (IFN-I)-mediated antiviral immunity in patients. However, the detailed molecular mechanisms by which SARS-CoV-2 evades the IFN-I-mediated antiviral response remain elusive. link3 Here, we performed a comprehensive screening and identified a set of SARS-CoV-2 proteins that antagonize the IFN-I response. Subsequently, we characterized the mechanisms of two viral proteins antagonize IFN-I production and downstream signaling. SARS-CoV-2 membrane protein binds to importin karyopherin subunit alpha-6 (KPNA6) to inhibit interferon regulatory factor 3(IRF3) nuclear translocation. Further, the spike protein interacts with signal transducer and activator of transcription 1 (STAT1) to block its association with Janus kinase 1 (JAK1). This study increases our understanding of SARS-CoV-2 pathogenesis and suggests novel therapeutic targets for the treatment of COVID-19.
This study aimed to analyze the periodontal conditions of patients with obstructive sleep apnea (OSA) in relation to the salivary microbiome.
In total, 54 male adults (27 with OSA, 27 controls) completed this cross-sectional study. All participants were monitored by overnight polysomnography (PSG) and underwent full-mouth periodontal examination. Saliva samples were then collected, and the microbial 16S ribosomal RNA gene was sequenced. The data were analyzed to determine the microbial distribution and the community structure of the two groups.
Demonstrated by alpha and beta diversity, the OSA group had a lower microbial richness and a lower observed species than the controls. There was no significant difference in the microbial species diversity or evenness between the OSA and the non-OSA groups. The OSA group had fewer operational taxonomic units (OTUs), and the distribution of microbiome showed that several gram-positive bacteria had higher abundance in the OSA group. As for periodontal pathogens, the relative abundance of
was significantly increased in the OSA group. No significant difference was observed in the relative abundance of other pathogens at either the genus or species level.
The salivary microbial community structure was altered in patients with OSA in terms of species richness and trans-habitat diversity, along with an increase in
, a specific periodontal pathogen. These findings might explain the high prevalence of periodontitis in OSA patients.
The salivary microbial community structure was altered in patients with OSA in terms of species richness and trans-habitat diversity, along with an increase in Prevotella, a specific periodontal pathogen. These findings might explain the high prevalence of periodontitis in OSA patients.
Homepage: https://www.selleckchem.com/products/mevastatin.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team