Notes
Notes - notes.io |
Squamous cell carcinoma of the nasal cavity (NCSCC) is a rare, challenging malignancy. Surgical resection of this tumor can cause significant facial deformity, and indications for adjuvant or organ preservation therapies are not well-described.
To examine the impact of treatment regimen on survival outcomes in NCSCC and to compare surgical to non-surgical based therapies.
The National Cancer Database was queried for NCSCC from 2004 to 2014. Patient demographics, tumor characteristics, and treatment regimen were compared for the entire cohort. Multivariable Cox proportional hazards regression was performed for statistical analysis of treatment regimen and surgical margins on overall survival (OS) for early and late-stage disease.
A total of 1883 NCSCC patients were identified. The OS for the cohort was 83 months, and median age at diagnosis was 65 years. NCSCC patients who underwent surgery followed by adjuvant radiation therapy (RT) had a better OS compared to definitive RT (HR 0.58,
< .001). In early stage NCSCC (T1/T2, N0), there was no significant difference in OS between patients treated with surgery only or surgery with adjuvant RT compared to definitive RT. In advanced stage NCSCC, surgery with adjuvant RT had a better OS compared to definitive chemoradiation. Having positive margins was shown to predict a worse OS when compared to negative margins in surgical patients despite adjuvant RT or chemoradiation.
NCSCC appears to be best treated with surgery followed by adjuvant RT in advanced-stage disease whereas in early-stage disease, surgery does not improve OS compared to definitive RT.
NCSCC appears to be best treated with surgery followed by adjuvant RT in advanced-stage disease whereas in early-stage disease, surgery does not improve OS compared to definitive RT.The lamin A precursor, prelamin A, requires extensive processing to yield mature lamin A and effect its primary function as a structural filament of the nucleoskeleton. When processing is perturbed, nuclear accumulation of prelamin A is toxic and causes laminopathic diseases such as Hutchinson-Gilford progeria syndrome and cardiomyopathy. However, the physiological role of prelamin A is largely unknown and we sought to identify novel insights about this. Using rodent heart tissue, primary cells and the C2C12 model of myofibrillogenesis, we investigated the expression and localization patterns of prelamin A in heart and skeletal muscle cells. We found that endogenous prelamin A was detectable in mouse heart localized to the sarcomere in both adult mouse heart and isolated neonatal rat cardiomyocytes. We investigated the regulation of prelamin A in C2C12 myofibrillogenesis and found it was dynamically regulated and organized into striations upon myofibril formation, colocalizing with the Z-disc protein α-actinin. These data provide evidence that prelamin A is a component of the sarcomere, underpinning a physiological purpose for unprocessed prelamin A. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation-contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.The heart meets the high energy demands of constant muscle contraction and calcium cycling primarily through the conversion of fatty acids into adenosine triphosphate (ATP) by a large volume of mitochondria. As such, the spatial relationships among lipid droplets (LDs), mitochondria, the sarcotubular system and the contractile apparatus are critical to the efficient distribution of energy within the cardiomyocyte. However, the connectivity among components of the cardiac cellular energy distribution system during postnatal development remains unclear. Here, we use volume electron microscopy to demonstrate that the sarcomere branches uniting the myofibrillar network occur more than twice as frequently during early postnatal development as in mature cardiomyocytes. Moreover, we show that the mitochondrial networks arranged in parallel to the contractile apparatus are composed of larger, more compact mitochondria with greater connectivity to adjacent mitochondria in mature as compared with early postnatal cardiomyocytes. Finally, we find that connectivity among mitochondria, LDs and the sarcotubular network is greater in developing than in mature muscles. These data suggest that physical connectivity among cellular structures may facilitate the communication needed to coordinate developmental processes within the cardiac muscle cell. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.Mitochondrial dysfunction in cardiomyocytes is a hallmark of heart failure development. Although initial studies recognized the importance of different mitochondrial subpopulations, there is a striking lack of direct comparison of intrafibrillar (IF) versus perinuclear (PN) mitochondria during the development of HF. Here, we use multiple approaches to examine the morphology and functional properties of IF versus PN mitochondria in pressure overload-induced cardiac remodelling in mice, and in non-failing and failing human cardiomyocytes. We demonstrate that PN mitochondria from failing cardiomyocytes are more susceptible to depolarization of mitochondrial membrane potential, reactive oxygen species generation and impairment in Ca2+ uptake compared with IF mitochondria at baseline and under physiological stress protocol. We also demonstrate, for the first time to our knowledge, that under normal conditions PN mitochondrial Ca2+ uptake shapes nucleoplasmic Ca2+ transients (CaTs) and limits nucleoplasmic Ca2+ loading. The loss of PN mitochondrial Ca2+ buffering capacity translates into increased nucleoplasmic CaTs and may explain disproportionate rise in nucleoplasmic [Ca2+] in failing cardiomyocytes at increased stimulation frequencies. Therefore, a previously unidentified benefit of restoring the mitochondrial Ca2+ uptake may be normalization of nuclear Ca2+ signalling and alleviation of altered excitation-transcription, which could be an important therapeutic approach to prevent adverse cardiac remodelling. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.The highly organized transverse tubule (t-tubule) network facilitates cardiac excitation-contraction coupling and synchronous cardiac myocyte contraction. In cardiac failure secondary to myocardial infarction (MI), changes in the structure and organization of t-tubules result in impaired cardiac contractility. However, there is still little knowledge on the regional variation of t-tubule remodelling in cardiac failure post-MI. Here, we investigate post-MI t-tubule remodelling in infarct border and remote regions, using serial block face scanning electron microscopy (SBF-SEM) applied to a translationally relevant sheep ischaemia reperfusion MI model and matched controls. Domatinostat in vitro We performed minimally invasive coronary angioplasty of the left anterior descending artery, followed by reperfusion after 90 min to establish the MI model. Left ventricular tissues obtained from control and MI hearts eight weeks post-MI were imaged using SBF-SEM. Image analysis generated three-dimensional reconstructions of the t-tubular network in control, MI border and remote regions. Quantitative analysis revealed that the MI border region was characterized by t-tubule depletion and fragmentation, dilation of surviving t-tubules and t-tubule elongation. This study highlights region-dependent remodelling of the tubular network post-MI and may provide novel localized therapeutic targets aimed at preservation or restoration of the t-tubules to manage cardiac contractility post-MI. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte new revelations on the interplay between architecture and function in growth, health, and disease'.
Here's my website: https://www.selleckchem.com/products/4sc-202.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team