NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Surface modification of nanofiltration walls to boost the removing of natural and organic micropollutants: Connecting membrane qualities to solute indication.
Importantly, most methods cannot be applied to either GWAS/eQTL summary statistics or cases with more than two possibly correlated traits. Here we present a simple and general approach based on conditional analysis of a locus on multiple traits, overcoming the above and other shortcomings of the existing methods. We demonstrate that, compared with other methods, our new method can be applied to a wider range of scenarios and often perform better. We showcase its applications to both simulated and real data, including a large-scale Alzheimer's disease GWAS summary dataset and a gene expression dataset, and a large-scale blood lipid GWAS summary association dataset. An R package "jointsum" implementing the proposed method is publicly available at github.Precision oncology has primarily relied on coding mutations as biomarkers of response to therapies. While transcriptome analysis can provide valuable information, incorporation into workflows has been difficult. For example, the relative rather than absolute gene expression level needs to be considered, requiring differential expression analysis across samples. However, expression programs related to the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific expression changes. To address these challenges, we developed an unsupervised clustering approach for discovering differential pathway expression within cancer cohorts using gene expression measurements. The hydra approach uses a Dirichlet process mixture model to automatically detect multimodally distributed genes and expression signatures without the need for matched normal tissue. We demonstrate that the hydra approach is more sensitive than widely-used gene set enrichment approaches for detecting multimodal expression signatures. Application of the hydra analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signatures associated with changes in the tumor microenvironment. The hydra approach also identified an association between ATRX deletions and elevated immune marker expression in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes, characterized by changes to infiltrating immune and stromal expression signatures.Until date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on "Black-box" algorithms and more interpretable models have been claimed by the research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue, were rule-based approaches are highly suitable for explanatory purposes. The further integration of the data mining process along with functional-annotation and pathway analyses is an additional way towards more explanatory and biologically soundness models. In this paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-extraction and functional validation) for finding biologically relevant sequential patterns from longitudinal human gene expression data (GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED collected within the course of a long-term dietary intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ three independent datasets following the same experimental design. As a result, we validate primarily extracted gene patterns and prove the goodness of our strategy for the mining of biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered under open-source software and could be easily extended to other human temporal GED applications.Perceptual bistability-the spontaneous, irregular fluctuation of perception between two interpretations of a stimulus-occurs when observing a large variety of ambiguous stimulus configurations. This phenomenon has the potential to serve as a tool for, among other things, understanding how function varies across individuals due to the large individual differences that manifest during perceptual bistability. Yet it remains difficult to interpret the functional processes at work, without knowing where bistability arises during perception. In this study we explore the hypothesis that bistability originates from multiple sources distributed across the perceptual hierarchy. We develop a hierarchical model of auditory processing comprised of three distinct levels a Peripheral, tonotopic analysis, a Central analysis computing features found more centrally in the auditory system, and an Object analysis, where sounds are segmented into different streams. We model bistable perception within this system by applying adaptation, inhibition and noise into one or all of the three levels of the hierarchy. We evaluate a large ensemble of variations of this hierarchical model, where each model has a different configuration of adaptation, inhibition and noise. This approach avoids the assumption that a single configuration must be invoked to explain the data. Each model is evaluated based on its ability to replicate two hallmarks of bistability during auditory streaming the selectivity of bistability to specific stimulus configurations, and the characteristic log-normal pattern of perceptual switches. Consistent with a distributed origin, a broad range of model parameters across this hierarchy lead to a plausible form of perceptual bistability.[This corrects the article DOI 10.1371/journal.pone.0140942.].OBJECTIVES Mental disorders and suicidality among adolescents have been identified as a major public health concern worldwide; however, they often do not get the necessary attention from parents, school and health professional, and therefore are left untreated. This study aimed to investigate the factors associated with the use of mental health services among Australian adolescents aged 13-17 with mental disorders and/or suicidality. Epigenetic inhibitor METHODS Adolescents aged 13-17 (n = 2134) from Young Minds Matter (YMM) the Second Australian Child and Adolescent Survey of Mental Health and Wellbeing were included in this study. The YMM is a cross-sectional nationwide survey, in which information was collected from both parents and adolescents (aged 13-17 years). Both bivariate and multivariate analyses were conducted to identify the factors that have an impact on the use of mental health services (outcome variable) in two subsamples (1) adolescents with mental disorder and (2) adolescents with suicidality. RESULTS Overall, 740 (34.
Homepage: https://www.selleckchem.com/pharmacological_epigenetics.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.