Notes
![]() ![]() Notes - notes.io |
6-2.0 mgkg-1. This study can contribute to incorporating microbial community hormesis into the ecological risk assessments in the future.Traditional sewage treatment technology cannot remove heavy metals, which needs to be improved urgently. Lysinibacillus with the function of bio-mineralization was screened and loaded on granular sludge to form a phosphate-mineralized bacterial consortium, which demonstrated the ability of self-regulating pH and automatic solid-liquid separation. Heavy metals could be fixed on the bacterial consortium to produce stable and harmless phosphate minerals. The highest removal efficiency of Pb(Ⅱ), Cd(Ⅱ), and Ni(Ⅱ) were 97.9%, 70%, and 40%, respectively. Organic matter and other metal ions in actual polluted water had little effect on the Pb(Ⅱ) removal efficiency. Mechanism analysis was conducted through 3D-EEM, XRD, SEM-EDS, XPS, FTIR, and high-throughput sequencing analyses. The bacterial consortium was a multi-species coexistence system, but Lysinibacillus played a major role in removing Pb(Ⅱ). C-O and O-H bonds of tyrosine and phosphorous organics were broken by enzyme catalysis and the metal-oxygen bond (Pb-O) was formed. Mineral crystals in the reactor accumulated, transforming from the initial phase non-crystalline structure to the metaphase Pb3(PO4)2 and eventually to the Pb5(PO4)3OH. This research obtained a promising technique for immobilizing Pb(Ⅱ) or other hazardous metals continuously and efficiently.Pyrolysis is a promising technique to achieve the sustainable utilization of heavy metal hyperaccumulator derived from phytoremediation of contaminated soils. To investigate the feasibility of synergistic treatment of hyperaccumulator and plastic waste (i.e. polyvinyl chloride, PVC), co-pyrolysis of Sedum alfredii and different mass percentages of PVC (5-25 wt%) was conducted at 300-900 °C in the present study. High pyrolysis temperature and low PVC addition amount (5 wt%) effectively promoted the volatilization of Cd and Zn from S. alfredii, while high PVC addition amount (15 wt% and 25 wt%) caused a significant suppression effect at insufficient pyrolysis temperatures. After PVC addition, the yields of biochar increased by 5.18-37.19% as compared with the theoretical values. However, the concentrations of Cd and Zn leached from biochar significantly elevated with increasing PVC addition amount, indicating that the addition of PVC improved the mobility of Cd and Zn in biochar. Moreover, S. alfredii derived biochars showed considerable sorption capacity for Cd (87.6-198.3 mg/g). These results imply that the addition of PVC has double-edged effects on heavy metal separation and biochar production during pyrolysis of Cd/Zn hyperaccumulator, and low PVC addition amount and sufficient pyrolysis temperature are beneficial for the further utilization of biochar.There is significant interest in the treatment of swine manure, which is a hazardous biowaste and a source of pathogenic contamination. This work investigated the effects of microorganism-mediated inoculants (MMIs) on nutrient flows related to humification or phosphorus (P) dynamics during the aerobic composting of swine manure. The impact of MMIs on microbe succession was also evaluated. selleck products The addition of MMIs had positive effects associated with nutrient flows, including thermal activation, decreases in certain fluorescence emissions, lower mass loss and variations in levels of certain elements and functional groups. MMIs altered the maturation behavior and kinetics of organic matter while improving microbial activity. Phosphorus was found in the compost in the forms of MgNH4PO4·6H2O crystals and Poly-P as the IP species, and Mono-P as the OP species in compost generated from the dissolution or inter-transformation among P pools. These nutrient flows are attributed to changes in the structure of microbial communities as a consequence of introducing MMIs. Diverse microbial compositions were identified in different composting phases, although Bacillus appeared in each phase. This work provides support for the aerobic composting of hazardous biowaste as well as an improved understanding of nutrient flows, as a means of producing higher quality compost.Sorption of organic pollutants on microplastics can be an alternative uptake route for organic pollutants in aquatic organisms. To assess the combined effects of microplastics and organic pollutants, we employed phenotypic and transcriptomic analyses to the responses of the marine rotifer Brachionus koreanus to environmentally relevant concentrations of nano-sized microplastic (0.05 µm), water-accommodated fractions of crude oil, and binary mixtures thereof. Our multigenerational in vivo experiments revealed more than additive effects on population growth of B. koreanus in response to combined exposure, while a single exposure to nano-sized microplastic did not induce observable adverse effects. Synergistic transcriptome deregulation was consistently associated with dramatically higher numbers of differentially expressed genes, and increased gene expression was associated with combined exposure. The majority of synergistic transcriptional alteration was related to metabolism and transcription, with impaired reproduction resulting from energetic reallocation toward adaptation. As further supported by chemistry analysis for polycyclic aromatic hydrocarbons sorption on microplastic, our findings imply that nano-sized microplastics can synergistically mediate the effects of organic pollutants in aquatic organisms.We reported the discovery and identification of emerging sulfur-containing polycyclic aromatic hydrocarbons, namely polycyclic aromatic sulfur heterocycles (PASHs), in PM2.5 collected from two typical regions of China, Taiyuan and Guangzhou. Until now, there is no research on contamination status, sources and potential health risks of this unexpected group of organic contaminants in PM2.5. High atmospheric concentrations (ngm-3) and significant time-dependent variations were determined in PM2.5 of Taiyuan from 2017 to 2018. Coal combustion/secondary formation and traffic emission/secondary formation were apportioned as possible pollution sources for the PM2.5-bound PASHs in Taiyuan and Guangzhou, respectively. Dithiothreitol and cell viability assays were applied for evaluations of PASH-induced reactive oxygen species (ROS) production and cell toxicity based on the determined real exposure levels for adults. The results illustrated that PASHs in PM2.5 possibly caused oxidative stress and inhibition of human bronchial epithelial cells in seriously polluted regions such as Taiyuan, suggesting that the pollutant-induced health concerns may need more investigations.
Read More: https://www.selleckchem.com/products/phtpp.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team