Notes
Notes - notes.io |
Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing of four components immediately before use. The self-assembling approach facilitates technology transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical setting due to the high risk of human errors during the procedure. In this work, it was hypothesized that the SANP preparation protocol could be simplified by using freeze-dried formulations. An in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition, the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the industrial development of SANPs for the delivery of drugs to the brain.The pathogenesis of chronic obstructive pulmonary disease (COPD) is characterized by complex cellular and molecular mechanisms, not fully elucidated so far. It involves inflammatory cells (monocytes/macrophages, neutrophils, lymphocytes), cytokines, chemokines and, probably, new players yet to be clearly identified and described. Chronic local and systemic inflammation, lung aging and cellular senescence are key pathological events in COPD development and progression over time. Extracellular vesicles (EVs), released by virtually all cells both as microvesicles and exosomes into different biological fluids, are involved in intercellular communication and, therefore, represent intriguing players in pathobiological mechanisms (including those characterizing aging and chronic diseases); moreover, the role of EVs as biomarkers in different diseases, including COPD, is rapidly gaining recognition. In this review, after recalling the essential steps of COPD pathogenesis, we summarize the current evidence on the roles of EVs collected in different biological mediums as biomarkers in COPD and as potential players in the specific mechanisms leading to disease development. We will also briefly review the data on EV as potential therapeutic targets and potential therapeutic agents.Erythropoietin (EPO) signaling plays a vital role in erythropoiesis by regulating proliferation and lineage-specific differentiation of murine hematopoietic progenitor cells (HPCs). An important downstream response of EPO signaling is calcium (Ca2+) influx, which is regulated by transient receptor potential channel (TRPC) proteins, particularly TRPC2 and TRPC6. While EPO induces Ca2+ influx through TRPC2, TRPC6 inhibits the function of TRPC2. Thus, interactions between TRPC2 and TRPC6 regulate the rate of Ca2+ influx in EPO-induced erythropoiesis. In this study, we observed that the expression of TRPC6 in KIT-positive erythroid progenitor cells was regulated by DOT1L. DOT1L is a methyltransferase that plays an important role in many biological processes during embryonic development including early erythropoiesis. https://www.selleckchem.com/products/BMS-754807.html We previously reported that Dot1l knockout (Dot1lKO) HPCs in the yolk sac failed to develop properly, which resulted in lethal anemia. In this study, we detected a marked downregulation of Trpc6 gene expression in Dot1lKO progenitor cells in the yolk sac compared to the wild type (WT). The promoter and the proximal regions of the Trpc6 gene locus exhibited an enrichment of H3K79 methylation, which is mediated solely by DOT1L. However, the expression of Trpc2, the positive regulator of Ca2+ influx, remained unchanged, resulting in an increased TRPC2/TRPC6 ratio. As the loss of DOT1L decreased TRPC6, which inhibited Ca2+ influx by TRPC2, Dot1lKO HPCs in the yolk sac exhibited accelerated and sustained elevated levels of Ca2+ influx. Such heightened Ca2+ levels might have detrimental effects on the growth and proliferation of HPCs in response to EPO.Chitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface. Unmodified nanofibers displayed highly porous structure with the presence of uniform, randomly aligned nanofibers, in contrast to coated materials in which almost all the free spaces were filled in with poly(dimethylsiloxane). Infrared spectroscopy indicated that solution blow technique did not influence the molecular nature of native polymers. Obtained nanofibers exhibited sufficient wound exudate absorbency, which appears beneficial to moisturize the wound bed during the healing process. Formulations displayed greater tensile strength as compared to commercial hydrofiber-like dressing materials comprised of carboxymethylcellulose sodium or calcium alginate, which points toward their protective function against mechanical stress. Coating with hydrophobic poly(dimethylsiloxane) (applied to favor nanofiber removal from the wound surface) impacted porosity and decreased both mechanical properties and adherence to excised human skin, though the obtained values were comparable to those attained for commercial hydrofiber-like materials. In vitro cytotoxicity and irritancy studies showed biocompatibility and no skin irritant response of nanofibers in contact with a reconstituted three-dimensional human skin model, while scratch assay using human fibroblast cell line HDFa revealed the valuable potential of CS/PEO nanofibers to promote cell migration at an early stage of injury.Hypoxia regulates fibroblast function by changing intracellular signaling and secretion factors, that influence the states of nearby cells. In this work, we investigated how medium (CM) from human adult dermal fibroblasts (HDFs) cultured in normoxic and hypoxic conditions affected cervical cancer (HeLa) cells. The HeLa cells showed decreased cell viability, increased apoptosis, and cell cycle arrest in response to CM from hypoxic-cultured HDFs (H-CM) compared with CM from normoxic-cultured HDFs (N-CM). Among the proteins up-regulated (>2-fold) in H-CM compared with N-CM, lymphotoxin-beta receptor (LTBR) decreased the viability of HeLa cells. Among the intracellular proteins down-regulated (>2-fold) in HeLa cells treated with H-CM compared with N-CM, the most enriched biological process GO term and KEGG pathway were protein deubiquitination and hsa05166HTLV-I infection, respectively. In the protein-protein interaction network of intracellular proteins with altered expression (>2-fold), 1 up-regulated (TNF) and 8 down-regulated (ESR1, MCL1, TBP, CD19, LCK, PCNA, CHEK1, and POLA1) hub proteins were defined. Among the down-regulated hub proteins, the most enriched biological process GO term and KEGG pathway were leading strand elongation and hsa05166HTLV-I infection, respectively. This study reveals that H-CM had stronger anti-cancer effects on cervical cancer cells than N-CM and induced intracellular signaling patterns related to those enhanced anti-cancer effects.Magnesium (Mg) is fundamental in the brain, where it regulates metabolism and neurotransmission and protects against neuroinflammation. To obtain insights into the molecular basis of Mg action in the brain, we investigated the effects of Mg in human brain organoids, a revolutionary 3D model to study neurobiology and neuropathology. In particular, brain organoids derived from human induced pluripotent stem cells were cultured in the presence or in the absence of an in vitro-generated blood-brain barrier (BBB), and then exposed to 1 or 5 mM concentrations of inorganic and organic Mg salts (Mg sulphate (MgSO4); Mg pidolate (MgPid)). We evaluated the modulation of NMDA and GABAergic receptors, and BDNF. Our data suggest that the presence of the BBB is essential for Mg to exert its effects on brain organoids, and that 5 mM of MgPid is more effective than MgSO4 in increasing the levels of GABA receptors and BDNF, and decreasing those of NMDA receptor. These results might illuminate novel pathways explaining the neuroprotective role of Mg.An approach using multivariate adaptive regression splines (MARSplines) was applied for quantitative structure-activity relationship studies of the antitumor activity of anthrapyrazoles. At the first stage, the structures of anthrapyrazole derivatives were subjected to geometrical optimization by the AM1 method using the Polak-Ribiere algorithm. In the next step, a data set of 73 compounds was coded over 2500 calculated molecular descriptors. It was shown that fourteen independent variables appearing in the statistically significant MARS model (i.e., descriptors belonging to 3D-MoRSE, 2D autocorrelations, GETAWAY, burden eigenvalues and RDF descriptors), significantly affect the antitumor activity of anthrapyrazole compounds. The study confirmed the benefit of using a modern machine learning algorithm, since the high predictive power of the obtained model had proven to be useful for the prediction of antitumor activity against murine leukemia L1210. It could certainly be considered as a tool for predicting activity against other cancer cell lines.Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC.
Website: https://www.selleckchem.com/products/BMS-754807.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team