NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Carbonaceous aerosols more than China--review associated with studies, emissions, and also local weather forcing.
Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial-spectral discrimination). To overcome these shortcomings, a novel linearized subspace analysis technique with spatial-spectral manifold alignment is developed for a semisupervised hyperspectral dimensionality reduction (HDR), called joint and progressive subspace analysis (JPSA). The JPSA learns a high-level, semantically meaningful, joint spatial-spectral feature representation from hyperspectral (HS) data by 1) jointly learning latent subspaces and a linear classifier to find an effective projection direction favorable for classification; 2) progressively searching several intermediate states of subspaces to approach an optimal mapping from the original space to a potential more discriminative subspace; and 3) spatially and spectrally aligning a manifold structure in each learned latent subspace in order to preserve the same or similar topological property between the compressed data and the original data. A simple but effective classifier, that is, nearest neighbor (NN), is explored as a potential application for validating the algorithm performance of different HDR approaches. Extensive experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely used HS datasets 1) Indian Pines (92.98%) and 2) the University of Houston (86.09%) in comparison with previous state-of-the-art HDR methods. The demo of this basic work (i.e., ECCV2018) is openly available at https//github.com/danfenghong/ECCV2018_J-Play.These days, social media users tend to express their feelings through sharing images online. Capturing the emotions embedded in these social images involves great research challenges and practical values. Most existing works concentrate on extracting the visual feature from a global view, while ignoring the fact that visual objects are also rich in emotion. How to leverage the multilevel visual features to improve the sentiment analysis performance is important yet challenging. Besides, existing works view each social image as an independent sample while ignoring the rich correlations among social images, which may be helpful in detecting visual emotion. In this article, we propose a novel model called social relations-guided multiattention networks (SRGMANs) to incorporate both the multilevel (region-level and object-level) visual features of a single image and the correlations among multiple social images to conduct visual sentiment analysis. Specifically, we first construct a heterogeneous network consisting of various types of social relations and introduce a heterogeneous network embedding method to learn the network representation for each image. Then, two visual attention branches (region attention network and object attention network) are devised to extract emotional and discriminative visual features. For each branch, we design a self-attention module to capture the emotional dependencies among visual parts. Besides, a network-guided attention module is also designed in each branch to focus on more network-related emotional visual parts with the guidance of the topology information. Finally, the attended visual features from the two attention models, together with network representation features, are combined within a holistic framework to predict the sentiment of social images. Extensive experiments demonstrate the superiority of our model on three benchmark datasets.Short bursts of repeating patterns [intervals of recurrence (IoR)] manifest themselves in many applications, such as in the time-series data captured from an athlete's movements using a wearable sensor while performing exercises. We present an efficient, online, one-pass, and real-time algorithm for finding and tracking IoR in a time-series data stream. We provide a detailed theoretical analysis of the behavior of any IoR and derive fundamental properties that can be used on real-world data streams. We show that why our method, unlike current state-of-the-art techniques, is robust to variations in repeats of the same pattern adjacent to each other. To evaluate our algorithm, we build a wearable device that runs our algorithm to conduct a user study. Our results show that our algorithm can detect intervals of repeating activities on edge devices with high accuracy (over 70% F1-Score) and in a real-time environment with only a 1.5-s lag. Our experimental results from real-world datasets demonstrate that our approach outperforms state-of-the-art algorithms in both accuracy and robustness to variations of the signal of recurrence.This article investigates the design of the ℓ₂-ℓ∞ dynamic output-feedback (DOF) controller for interval type-2 (IT2) T-S fuzzy systems with state delay. For nonlinear systems, the IT2 fuzzy model is an efficient modeling method which can better express uncertainties than the (type-1) fuzzy model. In addition, state delay is also a general factor that affects system performance. After analyzing the stability of the system, based on convex linearization and the projection theorem, this article proposes a delay-dependent output-feedback controller design method. The IT2 membership functions (MFs) of the fuzzy controller are chosen to be different from those of the model so as to increase the freedom of controller selection. A membership-function-dependent (MFD) method based on the staircase MFs is applied to relax the stability analysis results. Finally, a numerical simulation example is given to illustrate the effectiveness of the results.Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique for measuring rapid changes in the extracellular concentration of neurotransmitters within the brain. Due to its fast scan rate and large output-data size, the current analysis of the FSCV data is often conducted on a computer external to the FSCV device. #link# Moreover, the analysis is semi-automated and requires a good understanding of the characteristics of the underlying chemistry to interpret, making it unsuitable for real-time implementation on low-resource FSCV devices. This paper presents a hardware-software co-design approach for the analysis of FSCV data. Firstly, a deep neural network (DNN) is developed to predict the concentration of a dopamine solution and identify the data recording electrode. Secondly, the DNN is pruned to decrease its computation complexity, and a custom overlay is developed to implement the pruned DNN on a low-resource FPGA-based platform. The pruned DNN attains a recognition accuracy of 97.2% with a compression ratio of 3.18. When the DNN overlay is implemented on a PYNQ-Z2 platform, it achieves the execution time of 13 ms and power consumption of 1.479 W on the entire PYNQ-Z2 board. This study demonstrates the possibility of operating the DNN for FSCV data analysis on portable FPGA-based platforms.Chloroplast is one of the most classic organelles in algae and plant cells. Identifying the locations of chloroplast proteins in the chloroplast organelle is an important as well as a challenging task in deciphering their functions. G418 manufacturer to identify the protein sub-chloroplast localization (PSCL) is time-consuming and cost-intensive. Over the last decade, a few computational methods have been developed to predict PSCL in which earlier works assumed to predict only single-location; whereas, recent works are able to predict multiple-locations of chloroplast organelle. However, the performances of all the state-of-the-art predictors are poor. This study proposes a novel skipped gram technique to extract high discriminating patterns from evolutionary profiles and a multi-label deep neural network is proposed to predict the PSCL. The proposed model is assessed on two publicly available stringent datasets, i.e., Benchmark and Novel. link2 Experimental results demonstrate that the proposed model's performance significantly outperforms in all the evaluation metrics when compared to the multi-label state-of-the-art predictors. The proposed model's multi-label accuracy (i.e., Overall Actual Accuracy) is enhanced with respect to the best PSCL predictor from the literature by a minimum margin of 6.7% (absolute) on Benchmark and 7.9% (absolute) on Novel datasets.Accurate knowledge of the joint kinematics, kinetics, and soft tissue mechanical responses is essential in the evaluation of musculoskeletal (MS) disorders. Since in vivo measurement of these quantities requires invasive methods, musculoskeletal finite element (MSFE) models are widely used for simulations. There are, however, limitations in the current approaches. Sequentially linked MSFE models benefit from complex MS and FE models; however, MS model's outputs are independent of the FE model calculations. On the other hand, due to the computational burden, embedded (concurrent) MSFE models are limited to simple material models and cannot estimate detailed responses of the soft tissue. Thus, first we developed a MSFE model of the knee with a subject-specific MS model utilizing an embedded 12 degrees of freedom (DoFs) knee joint with elastic cartilages in which included both secondary kinematic and soft tissue deformations in the muscle force estimation (inverse dynamics). Then, a muscle-force-driven FE model with fibril-reinforced poroviscoelastic cartilages and fibril-reinforced poroelastic menisci was used in series to calculate detailed tissue mechanical responses (forward dynamics). Second, to demonstrate that our workflow improves the simulation results, outputs were compared to results from the same FE models which were driven by conventional MS models with a 1 DoF knee, with and without electromyography (EMG) assistance. The FE model driven by both the embedded and the EMG-assisted MS models estimated similar results and consistent with experiments from literature, compared to the results estimated by the FE model driven by the MS model with 1 DoF knee without EMG assistance.Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) decoding helps motor-disabled patients to communicate with external devices directly, which can achieve the purpose of human-computer interaction and assisted living. MI EEG decoding has a core problem which is extracting as many multiple types of features as possible from the multi-channel time series of EEG to understand brain activity accurately. Recently, deep learning technology has been widely used in EEG decoding. However, the variability of the simple network framework is insufficient to satisfy the complex task of EEG decoding. A multi-scale fusion convolutional neural network based on the attention mechanism (MS-AMF) is proposed in this paper. link3 The network extracts spatio temporal multi-scale features from multi-brain regions representation signals and is supplemented by a dense fusion strategy to retain the maximum information flow. The attention mechanism we added to the network has improved the sensitivity of the network. The experimental results show that the network has a better classification effect compared with the baseline method in the BCI Competition IV-2a dataset. We conducted visualization analysis in multiple parts of the network, and the results show that the attention mechanism is also convenient for analyzing the underlying information flow of EEG decoding, which verifies the effectiveness of the MS-AMF method.
Here's my website: https://www.selleckchem.com/products/geneticin-g418-sulfate.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.