Notes
![]() ![]() Notes - notes.io |
CP concentration was significantly correlated to population density and gross domestic product (GDP) (p less then 0.001), and structural equation models incorporating administrative regional planning showed an indirect impact on the distribution of MCCP concentration due to the influence of regional planning on population density. These results highlight the association between CP contamination and the degree of urbanization, and this paper provides useful information toward mitigating the exposure risk of CPs for urban inhabitants.Sludge landscaping after compost stabilization is a popular recycling process; however, until trace elements (TEs) are extracted by plants and reduced to safe concentrations, they present a potential exposure risk. Three garden plants, Liriope platyphylla Wang et Tang (L. platyphylla), Iris tectorum Maxim (I. tectorum), and Photinia x fraseri Dress (P. x fraseri), were selected for field experiments, and their ability to phytoremediate TEs and the promotion effect of citric acid (CA) were studied over 3 months of observation. Among the three kinds of plants, L. platyphylla had the highest biomass per unit soil area, and the CA treatment further increased the biomass of this plant per unit soil area as well as the uptake of TEs. When treated with 3 mmol kg-1 CA, L. platyphylla showed increases in the bioconcentration factors of Cu, Zn, Pb, and Cd by 24%, 63%, 27%, and 123%, respectively. Because of the large biomass and high concentrations of TEs, L. platyphylla had high phytoremediation indexes for Zn, Cu, Pb, Ni, and Cd, which reached 18.5, 3.7, 3.2, 2.2, and 0.4 mg m-2, respectively, and were further improved by 60%-187% by the CA treatment. These advantages indicate the potential usefulness of L. platyphylla for phytoremediation. The results provide basic data and technical support for the use of sludge-based compost and phytoremediation by garden plants.Considerable uncertainty exists with regard to the effects of thinning and harvesting on N2O emissions as a result of changes caused in the belowground environment by tree cutting. To evaluate on the effects of changes in the belowground environment on N2O emissions from soils, we conducted a tree manipulation experiment in a Japanese cedar (Cryptomeria japonica) stand without soil compaction or slash falling near measurement chambers and measured N2O emission at distances of 50 and 150 cm from the tree stem (stump) before and after cutting. In addition, we inferred the effects of logging on the emission using a hierarchical Bayesian (HB) model. https://www.selleckchem.com/products/sr59230a.html Our results showed that tree cutting stimulated N2O emission from soil and that the increase in N2O emission depended on the distance from the stem (stump); increase in N2O emission was greater at 50 than at 150 cm from the stem. Tree cutting caused the estimated N2O emission at 0-40 cm from the stem to double (the % increase in N2O emission by tree cutting was 54%-213%, 95% predictive credible interval) when soil temperature was 25 °C and WFPS was 60%. Posterior simulation of the HB model predicted that 30% logging would cause a 57% (47%-67%) increase in N2O emission at our study site (2000 trees ha-1) considering only the effects of belowground changes by tree cutting during the measurement period.The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and Mnisms.Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N2 fixer-dominated to non-N2 fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such "counter-intuitive" CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N2-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N2-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions.
Read More: https://www.selleckchem.com/products/sr59230a.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team