Notes
![]() ![]() Notes - notes.io |
Novel heterogeneous PEF processes involving solid iron catalysts or iron-modified cathodes are subsequently detailed. Finally, the oxidation power of hybrid processes including photocatalysis/PEF, solar photocatalysis/SPEF, photoelectrocatalysis/PEF and solar photoelectrocatalysis/SPEF, followed by that of sequential processes like electrocoagulation/PEF and biological oxidation coupled to SPEF, are analyzed. Pyrolysis temperature is one of the important factors that affect the structure and composition of biochar-derived dissolved organic matter (DOM), which may impact interaction between biochar-derived DOM and Cu(II). Moreover, soil application of biochars pyrolyzed at different temperatures is supposed to cause different complexation behaviors between soils-derived DOM and Cu(II). However, little is known about these aspects. Here, incubation experiments and quenching titration experiments were conducted to explore such pyrolysis temperatures-dependent changes in sludge and sludge-based biochars (SSBA). Two-dimension correlation spectroscopy (2D-COS) indicated humic-like fraction had stronger affinities with Cu(II) in DOM from both sewage sludge (SS) and 500 °C sludge-based biochars (SSB5) while protein-like fraction showed the fastest response to Cu(II) binding in DOM from 300 °C sludge-based biochars (SSB3). One protein-like substance (Component 1) and two humic-like substances (Component 2 and 3) were identified in the DOM derived from SSBA through excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis. Moreover, the Cu(II) complexation affinities of component 1, 2 and 3 decreased from 4.43, 4.53 and 4.86 to 3.26, 3.50 and 3.39 with increasing pyrolysis temperatures, respectively. The addition of 10% SS evidently increased the complexation affinities of humic-like substances in soil-derived DOM from 4.43 to 4.68 to 4.60-6.86, while the complexation affinities of humic-like substances decreased from 4.52 to 4.78 to 3.82-4.50 at a 10% amendment of sludge-based biochars. Compared with sewage sludge, agricultural soil amended with 10% sludge-based biochars had better performance in the aspect of Cu(II) mobility, but had weaker detoxication effect on Cu(II). Aggregation of nanoparticles (NPs) can hinder the degradative reactivity of particles towards organic pollutants as it reduces available surface area for reaction. This limitation may be circumvented by applying dispersant to improve colloidal stability of nanoparticle suspension. This study examined the removal of hexabromocyclododecane (HBCD), a recently listed persistent organic pollutant, by carboxymethylcellulose (CMC) stabilized nanoscale zerovalent iron (CMC-NZVI) and bimetallic Ni/Fe nanoparticles (CMC-Ni/Fe) under the influence of suspension chemistry. The mass-normalized removal rate constants of HBCD by CMC-Ni/Fe NPs increased with lower particle aggregation. However, the coating could introduce diffusion resistance as HBCD diffused through the CMC layer to the Fe surface. The activation energy was estimated to be 26.8 kJ mol-1, indicating the overall reaction process was neither surface-limited nor diffusion-controlled. The reactivity of CMC-Ni/Fe NPs toward HBCD was not affected by aqueous initial pH substantially. Common monoanions (Cl-, NO3-, and HCO3-) generally enhanced HBCD adsorption but diminished its debromination. The removal rate did not differ significantly among the studied monoanions over a concentration of 2.5-10 mM except HCO3-. Overall, CMC coating can stabilize Ni/Fe NPs, increase their adsorption of HBCD, provide buffer pH capacity, and overcome common inhibition effects of anions in water. These findings suggested the high potential of using CMC-Ni/Fe NPs for in-situ remediation. In this study, we evaluated the phytoremediation ability of three different genotypes of cowpea (Vigna unguiculata L. selleck Walp) grown on mercury-contaminated soils from gold mining areas. In particular we compared a native genotype with two commercial lines L-019 and L-042. The plants were cultivated in soils amended at different concentrations of Hg (i.e. 0.2, 1, 2, 5 and 8 mg kg-1). After three months exposure, we determined plant growth, seed production, and Hg accumulation in different plant tissues (root, leaf, seed and stem). Indices of soil-plant metal transfer such as translocation, bioconcentration and bioaccumulation factors were calculated. Results showed that the native variety presented the highest seed production (3.8 g), however the highest plant biomass (7.9 g) was observed in line L-019, both on Hg-contaminated soil of 1 mg kg-1. The different plant tissues differed in terms of Hg concentration (root > leaf > stem). In the highest treated soil, the line L-042 accumulates higher Hg in both roots and leaves, while line L-019 accumulates more metal in stems. In line L-019, Hg concentrations in the fruit showed significant differences being higher in the valves than in the seeds. The transfer factors were generally lower than 1 and indicates the low accumulation of Hg by cowpeas. The estimated daily Hg intake through cowpea consumption showed values far below the threshold of 0.57 μg kg-1 dw day-1 recommended by the World Health Organization. Our results show cowpea V. unguiculata as a good protein-rich food substitute of Hg-contaminated fish for populations living near gold mining sites. It remains unknown if casts produced by earthworms exposed to a glyphosate-based herbicide (GBH) will retain their agricultural benefit. This study investigated the agricultural importance of surface casts produced by three earthworm species (Alma millsoni, Eudrilus eugeniae and Libyodrilus violaceus) exposed to a GBH on growth, fruit yield and quality of tomato (Lycopersicon esculentum). We sprayed 60 buckets (i.e 20 buckets/earthworm species) containing 20 adult earthworms of each species with 115.49 ml/m2 of Roundup® Alphée (Exposed) while another 60 buckets with earthworm species were sprayed with water (Control). Surface casts produced by the earthworms were collected for 1st, 2nd, 4th, 6th and 8th week post herbicide application. Tomato planting experiment on soil treated with the casts, NPK fertilizer and normal soil were grouped into 32 treatments. Tomato growth performance, yield and quality were evaluated with standard methods. Only the tomatoes planted with the casts of the exposed earthworms were unable to set fruit. There was no significant difference (p less then 0.05) in yields of tomatoes planted with the control casts of E. eugeniae and A. millsoni compared to those planted with fertilizer. Vitamin C and β-carotene contents increased in fruits of tomatoes planted with control cast of A. millsoni while reductions were recorded in the fruits of tomatoes planted with the control casts of E. eugeniae and L. violaceus relative to those planted with fertilizer. Surface casts of earthworms exposed to GBH could not enhance tomato growth while casts produced by unexposed earthworms greatly improved the performance of tomato plant. Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging. V.Mitochondrial function has long been the focus of many therapeutic strategies for ameliorating age-related neurodegeneration and cognitive decline. Historically, the role of mitochondria in non-neuronal cell types has been overshadowed by neuronal mitochondria, which are responsible for the bulk of oxidative metabolism in the brain. Despite this neuronal bias, mitochondrial function in glial cells, particularly astrocytes, is increasingly recognized to play crucial roles in overall brain metabolism, synaptic transmission, and neuronal protection. Changes in astrocytic mitochondrial function appear to be intimately linked to astrocyte activation/reactivity found in most all age-related neurodegenerative diseases. Here, we address the importance of mitochondrial function to astrocyte signaling and consider how mitochondria could contribute to both the detrimental and protective properties of activated astrocytes. Strategies for protecting astrocytic mitochondrial function, promoting bidirectional transfer of mitochondria between astrocytes and neurons, and transplanting healthy mitochondria to diseased nervous tissue are also discussed. V.This study explored the denitrification performance of solid-phase denitrification (SPD) systems packed with poly (butylene succinate)/bamboo powder composite to treat synthetic aquaculture wastewater under different salinity conditions (0‰ Vs. 25‰). The results showed composite could achieve the maximum denitrification rates of 0.22 kg (salinity, 0‰) and 0.34 kg NO3--N m-3 d-1 (salinity, 25‰) over 200-day operation. No significant nitrite accumulation and less dissolved organic carbon (DOC) release ( less then 15 mg/L) were found. The morphological and spectroscopic analyses demonstrated the mixture composites degradation. Microbial community analysis showed that Acidovorax, Simplicispira, Denitromonas, SM1A02, Marinicella and Formosa were the dominant genera for denitrifying bacteria, while Aspergillus was the major genus for denitrifying fungus. The co-network analysis also indicated the interactions between bacterial and fungal community played an important role in composite degradation and denitrification. The outcomes provided a potential strategy of DOC control and cost reduction for aquaculture nitrate removal by SPD. This study evaluated the ensiling performance of excessively wilted maize stover (EWMS) with biogas slurries and the effect on the subsequent biomethane potential. Chicken and pig manure biogas slurries with or without solid-liquid separation were used to amend the stover humidity before ensiling for 60 d. The hetero-lactic-acid fermentative bacteria Atopostipes and Lactobacillus were enriched by the biogas slurry regardless of the solid-liquid separation. Significant increases in the total organic-acid content were observed in silages with chicken (41%) and pig (15%) manure biogas slurries without solid-liquid separation, which was not the case for treatments with solid-liquid separation. During the ensiling process, more lignocellulose was degraded under the high buffer-capacity provided by the ammonia-nitrogen in the biogas slurry. An increase of 7.1%-9.6% was observed for the specific methane yieldmeasured, which offset a storage loss of 5.0%-7.3%. Ensiling EWMS with biogas slurry therefore provides a viable strategy for biogas production.
Homepage: https://www.selleckchem.com/products/salinosporamide-a-npi-0052-marizomib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team