Notes
Notes - notes.io |
In contrast, postencoding sleep, relative to wakefulness, improved free recall, but not cued recall, of all forms of content. Finally, individuals with higher trait scores in the Survey of Autobiographical Memory spontaneously incorporated more spatial details during free recall, and more event details (at a trend level) in a novel recombination recall task. These findings show that prior familiarity, postencoding sleep, and memory traits can each enhance a different form of recall. More broadly, this work highlights that recall is heterogeneous in response to different influences on memory.When we look at repeated scenes, we tend to visit similar regions each time-a phenomenon known as resampling Resampling has long been attributed to episodic memory, but the relationship between resampling and episodic memory has recently been found to be less consistent than assumed. A possibility that has yet to be fully considered is that factors unrelated to episodic memory may generate resampling for example, other factors such as semantic memory and visual salience that are consistently present each time an image is viewed and are independent of specific prior viewing instances. We addressed this possibility by tracking participants' eyes during scene viewing to examine how semantic memory, indexed by the semantic informativeness of scene regions (i.e., meaning), is involved in resampling. Envonalkib inhibitor We found that viewing more meaningful regions predicted resampling, as did episodic familiarity strength. Furthermore, we found that meaning interacted with familiarity strength to predict resampling. Specifically, the effect of meaning on resampling was attenuated in the presence of strong episodic memory, and vice versa. These results suggest that episodic and semantic memory are each involved in resampling behavior and are in competition rather than synergistically increasing resampling. More generally, this suggests that episodic and semantic memory may compete to guide attention.In signaled active avoidance (SigAA), rats learn to suppress Pavlovian freezing and emit actions to remove threats and prevent footshocks. SigAA is critical for understanding aversively motivated instrumental behavior and anxiety-related active coping. However, with standard protocols ∼25% of rats exhibit high freezing and poor avoidance. This has dampened enthusiasm for the paradigm and stalled progress. We demonstrate that reducing shock imminence with long-duration warning signals leads to greater freezing suppression and perfect avoidance in all subjects. This suggests that instrumental SigAA mechanisms evolved to cope with distant harm and protocols that promote inflexible Pavlovian reactions are poorly designed to study avoidance.According to dual-process theory, recognition memory performance draws upon two processes, familiarity and recollection. The relative contribution to recognition memory are commonly distinguished in humans by analyzing receiver-operating-characteristics (ROC) curves; analogous methods are more complex and very rare in animals but fast familiarity and slow recollective-like processes (FF/SR) have been detected in nonhuman primates (NHPs) based on analyzing recognition error response time profiles. The relative utility of these methods to investigate familiarity and recollection/recollection-like processes across species is uncertain; indeed, even how comparable the FF/SR measures are across humans and NHPs remains unclear. Therefore, in this study a broadly similar recognition memory task was exploited in both humans and a NHP to investigate the time course of the two recognition processes. We first show that the FF/SR dissociation exists in this task in human participants and then we demonstrate a similar profile in the NHP which suggests that FF/SR processes are comparable across species. We then verified, using ROC-derived indices for each time-bin in the FF/SR profile, that the ROC and FF/SR measures are related. Hence, we argue that the FF/SR approach, procedurally easier in nonhuman animals, can be used as a decent proxy to investigate these two recognition processes in future animal studies, important given that scant data exists as to the neural basis underlying recollection yet many of the most informative techniques primarily exist in animal models.Peptide therapeutics, unlike small molecule drugs, display crucial advantages of target-specificity and the ability to block large interacting interfaces such as those of transcription factors. The transcription co-factor of the Hippo pathway, YAP/Yki, has been implicated in many cancers, and is dependent on its interaction with the DNA-binding TEAD/Sd proteins via a large Ω-loop. In addition, the mammalian Vestigial Like (VGLL) protein, specifically its TONDU domain, competitively inhibits YAP-TEAD interaction, resulting in arrest of tumor growth. Here, we show that either overexpression of the TONDU peptide or its oral uptake leads to suppression of Yorkie (Yki)-driven intestinal stem cell (ISC) tumors in the adult Drosophila midgut. In addition, comparative proteomic analyses of peptide-treated and untreated tumors, together with ChIP analysis, reveal that integrin pathway members are part of the Yki-oncogenic network. Collectively, our findings establish Drosophila as a reliable in vivo platform to screen for cancer oral therapeutic peptides and reveal a tumor suppressive role for integrins in Yki-driven tumors.Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer.
Read More: https://www.selleckchem.com/products/envonalkib.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team