Notes
![]() ![]() Notes - notes.io |
flavus resistant maize lines. Further, delayed flowering of the two resistant maize lines might have contributed to the pervasive H. see more zea damage of these lines by providing young silk for egg-laying. These results highlight the need for integrated strategies targeting mycotoxigenic fungi as well as their insect vectors for enhanced food safety.Proline accumulation is a widespread response of plants to salt stress as well as drought and cold stress. In most plant species, two isoforms of pyrroline-5-carboxylate synthetase (P5CS) catalyze the first step in proline biosynthesis from glutamate. In Arabidopsis, these isoforms differ in their spatial and temporal expression patterns, suggesting sub-functionalization. P5CS1 has been identified as the major contributor to stress-induced proline accumulation, whereas P5CS2 has been considered important for embryo development and growth. In contrast to previous results, our analysis of P5CS1- and P5CS2-GFP fusion proteins indicates that both enzymes were exclusively localized in the cytosol. The comparison of the susceptibility of p5cs1 and p5cs2 mutants to infection with Pseudomonas syringae and salt stress provided novel information on the contribution of the two P5CS isoforms to proline accumulation and stress tolerance. In agreement with previous studies, salt-stressed p5cs1 mutants accumulated very littrance.Temperature sensitive mutants have been widely used to study structure, biogenesis and function of a large variety of essential proteins. However, this method has not yet been exploited for the study of photosynthesis. We used negative selection to isolate temperature-sensitive-photoautotrophic (TSP) mutants in Chlamydomonas reinhardtii. From a population of randomly mutagenized cells (n=12,000), a significant number of TSP mutants (n=157) were isolated. They were able to grow photoautotrophically at 25°C, but lacked this ability at 37°C. Further phenotypic characterization of these mutants enabled the identification of three unique and highly interesting mutant strains. Following, the selected strains were genetically characterized by extensive crossing and whole genome sequencing. Correspondingly, the single amino acid changes P628F in the Chloroplast-Elongation-Factor-G (CEF-G), P129L in Phosphoribulokinase (PRK), and P101H in an essential subunit of Photosystem II (PsbO) were identified. These key changes alter the proteins in such way that they were functional at the permissive temperature, however, defective at the restrictive temperature. These mutants are presented here as superb and novel tools for the study of a wide range of aspects relevant to photosynthesis research, tackling three distinct and crucial photosynthetic processes Chloroplast translation, PET-chain, and CBB-cycle.Tomato cultivation in the greenhouse or field may experience high surplus salts, including magnesium (Mg2+), which may result in differences in the growth and metabolite composition of fruits. This study hypothesized that decreasing the supply of nutrients and/or water would enhance tomato fruit quality in soils with excess Mg2+ that are frequently encountered in the field and aimed to find better supply conditions. For tomato plants cultivated in plastic pots using a plastic film house soil, the fertilizer supply varied in either the nitrogen (N) or potassium (K) concentration, which were either 0.1 (lowest) or 0.75 times (lower) than the standard fertilizer concentrations. Water was supplied either at 30 (sufficient) or 80 kPa (limited) of the soil water potential. Lycopene content on a dry-weight basis (mg/kg) was enhanced by the combination of lowest N supply and sufficient water supply. However, this enhancement was not occurred by the combination of the lowest N supply and limited water supply. Sugars and organic acids were decreased by limiting the water supply. Therefore, we carefully suggest that an adjustment of nitrogen with sufficient watering could be one of strategies to enhance fruit quality in excess Mg2+ soils.The rhizosphere microbiome is crucial for plant health, especially for preventing roots from being infected by soil-borne pathogens. Microbiota-mediated pathogen response in the soil-root interface may hold the key for microbiome-based control strategies of phytopathogens. We studied the pathosystem sugar beet-late sugar beet root rot caused by Rhizoctonia solani in an integrative design of combining in vitro and in vivo (greenhouse and field) trials. We used five different cultivars originating from two propagation sites (France, Italy) with different degrees of susceptibility towards R. solani (two susceptible, one moderately tolerant and two cultivars with partial resistance). Analyzing bacterial communities in seeds and roots grown under different conditions by 16S rRNA amplicon sequencing, we found site-, cultivar-, and microhabitat-specific amplicon sequences variants (ASV) as well as a seed core microbiome shared between all sugar beet cultivars (121 ASVs representing 80%-91% relative abundance). In gerovide specific beneficial bacteria for rhizosphere assembly and microbiota-mediated pathogen tolerance. This can be translated into microbiome management strategies for plant and ecosystem health.Temperature and water potential are two important environmental factors influencing germination and subsequent seedling establishment. Seed germination requirements vary with species and with the environment in which the seeds are produced. Stipa species dominate large areas of the Eurasian zonal vegetation, but comparisons of germination requirements between Stipa species from different habitats is limited. We investigated the effects of temperature and water potential on seed germination of S. grandis, S. purpurea, and S. penicillata from habitats with low temperatures and relatively abundant rainfall (cool habitats) and S. glareosa, S. breviflora, S. gobiea, and S. bungeana from habitats with relatively high temperatures and low amount of rainfall (warm habitats). Seeds of species from cool habitats had a higher base (Tb), optimal (To), and maximum (Tc) temperature than those of species from warm habitats, except for the base temperature of S. purpurea. Response of six tested Stipa species to water potential differed among species but not between habitats. Median water potential for germination was lowest for S. bungeana, S. penicillata, and S. gobiea. There was a negative correlation between hydrotime constant (θH) and base water potential for 50% of the seeds of all species to germinate (ψb(50)). Germination time of seven Stipa species in response to temperature and water was well predicted by thermal time and hydrotime models. Results of the present study on germination of these seven species of Stipa may provide useful suggestions for grassland restoration in different habitats.Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins. Here we used TPs from four Arabidopsis thaliana proteins, three related to photosynthesis (chlorophyll a/b binding protein, Rubisco activase) and photo-protection (tocopherol cyclase) and one involved in the assimilation of ammonium into amino-acids, and whose expression is most abundant in the root (ferredoxin dependent glutamate synthase 2), to determine whether they were able to mediate import of a nuclear-encoded marker protein into plastids of different tissues of a dicot and a monocot species. In A. thaliana, import and processing efficiency was high in all cases, while TP from the rice Rubisco small chain 1, drove very low import in Arabidopsis tissues. Noteworthy, our results show that Arabidopsis photosynthesis TPs also mediate plastid import in rice callus, and in leaf and root tissues with almost a 100% efficiency, providing new biotechnological tools for crop improvement strategies based on recombinant protein accumulation in plastids by the expression of nuclear-encoded transgenes.Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2-, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytiscinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.Dehydration-responsive element binding (DREB) transcription factors play crucial regulatory roles in abiotic stress. The only DREB transcription factor in tomato (Solanum lycopersicum), SlDREBA4 (Accession No. MN197531), which was determined to be a DREBA4 subfamily member, was isolated from cv. Microtom using high-temperature-induced digital gene expression (DGE) profiling technology. The constitutive expression of SlDREBA4 was detected in different tissues of Microtom plants. In addition to responding to high temperature, SlDREBA4 was up-regulated after exposure to abscisic acid (ABA), cold, drought and high-salt conditions. Transgenic overexpression and silencing systems revealed that SlDREBA4 could alter the resistance of transgenic Microtom plants to heat stress by altering the content of osmolytes and stress hormones, and the activities of antioxidant enzymes at the physiologic level. Moreover, SlDREBA4 regulated the downstream gene expression of many heat shock proteins (Hsp), as well as calcium-binding protein enriched in the pathways of protein processing in endoplasmic reticulum (ko04141) and plant-pathogen interaction (ko04626) at the molecular level. SlDREBA4 also induces the expression of biosynthesis genes in jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH), and specifically binds to the DRE elements (core sequence, A/GCCGAC) of the Hsp genes downstream from SlDREBA4. This study provides new genetic resources and rationales for tomato heat-tolerance breeding and the heat-related regulatory mechanisms of DREBs.
Homepage: https://www.selleckchem.com/products/bay-2416964.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team