Notes
Notes - notes.io |
8). The redundancy analysis (RDA) showed that concentrations of Al, Mn, Zn, Cu, and Fe in the gill tissue were significantly correlated with the environmental variables. In contrast, the RDA based on element concentrations in the fish muscles indicated no significant relationship with the environment. Isolated ponds, with no inflow of freshwater, stand out as the most polluted, followed by Kopačko Lake with occasional floods. Flowing freshwater ecosystem South Morava River can be single out as at least polluted with PTEs. The target hazard quotients (THQ) and hazard index (HI) suggested there were no significant noncarcinogenic health risks. The target carcinogenic risk factor (TR) for As and Pb confirmed there were no cancer risks related to human fish consumption. Since the elevated concentrations of toxic Cd and As in Prussian carp were estimated, an early warning should be assumed, especially for fishing activities in these areas.Urban Atlas (UA) data covering the large urban areas have been produced by the European Environment Agency for a variety of European countries including Turkey since 2006. The use of the UA data for the determination of spatiotemporal land use and density changes in urban areas. UA data of Eskisehir, Turkey, were used in order to detect the spatiotemporal changes between 2012 and 2018. CORINE data-based change detection and NDVI analysis were also made and compared with the results obtained from the UA data. The results based on the UA data revealed that the artificial surfaces in the study area increased by 17.65% and there was a 18.32% increase in the total amount of agricultural lands, natural lands, forests, and vegetation. Although CORINE data-based analyses showed a similar trend in land use/land cover changes, the amount of changes between 2012 and 2018 in CORINE and UA data-based analyses were found to be 4.99% and 17.55%, respectively. A 9.30% mismatch between the UA changes and NDVI difference data was also calculated. Research findings revealed that the utilization of the UA data in the urban territories would be advantageous especially in planning processes to detect and compare the changes in the artificial and non-artificial surfaces and NDVI analysis would be very supportive to control and compare the results. It is also concluded that this study may be a useful model to monitor the cities in accordance with the 2030 and 2050 policies of European Council on Land Use, Land Use Change and Forestry.Anthropogenic activities have reshaped the structure and function of ecosystems in global urban agglomerations. Evaluating the spatiotemporal features of ecosystem health for sustainable and high-quality development and the strategic deployment of ecological civilisation in urban agglomerations is essential. However, existing research lacks a multi-scale assessment of ecosystem health in urban agglomerations, limiting governments in formulating effective ecosystem management policies. To bridge this gap, a multi-scale assessment of ecosystem health at the county and township levels in the Middle Reaches of the Yangtze River Urban Agglomerations (MRYRUA) in China was conducted using the 'Pressure-State-Response' framework. The results showed that most units (> 70%) were at a moderately healthy level, while only a small proportion ( less then 10%) was at a healthy level from 2000 to 2015 at both scales. The ecosystem health level in the surrounding and central mountainous areas was significantly higher than that in the plain areas. Our results demonstrated that the overall ecosystem health index in the MRYRUA continued to decrease during the study period at both scales. The ecosystem health in the key cities, the surrounding units of the key cities, and the units along the main traffic routes were low. This study provides an overview of ecosystem health and a scientific basis for landscape planning and ecosystem restoration in the MRYRUA.The surface properties of the adsorbents and the acidic environment have an influence effect on Pb adsorption. In order to further improve the adsorption performance of biochar, we herein reported an effective method to synthesize high-adsorbed biochar by co-doping with nitrogen and phosphorus. After atom doping, the N/P co-doped biochar (NP-BC) showed the enhanced adsorption capacity for lead ion (Pb2+). The adsorption kinetics, isotherm, pH value, and influencing factors were studied. The results show that the synthesized NP-BC has high Pb2+ adsorption capacity in aqueous solution, and can be maintained with various environmental interference factors including pH, natural organic matter, and other metal ions. High adsorption performance shows that the material may be well used to remove Pb2+ in various water bodies. Various characterization experiments prove that surface properties contribute to Pb2+ adsorption, and the high performance of NP-BC is mainly due to the surface complexation between functional groups and Pb2+. This work demonstrates that the surface functional groups of biochar are critical to the development of high-performance heavy metal adsorbents.Coalbed methane not only is a new clean energy source, but also has potential damage to ecological environment. Water and methane coexist in coal reservoir; understanding the adsorption of water on coal and its impact on pore structure and methane adsorption of coal is vital to evaluate the reserves and productivity of coalbed methane. In the paper, water adsorption characteristics of various rank coals are firstly investigated by ten mathematical models. The modified Dent model provides a best fit, followed by GAB and Dent models. For GAB model, the primary site adsorption is more difficult to reach saturation, and the contribution rate of the secondary site adsorption is surprisingly high at P/P0 approaching 0, which can be attributed to the possible overestimation of GAB monolayer adsorption capacity and secondary site adsorption. Besides, the low-rank coal sample YZG2 exhibits more prominent hysteresis than middle- to high-rank coals. The low-pressure hysteresis can be attributed to the water-water interactions over the primary site and the strengthened binding forces of water molecules in the water desorption process. In contrast, the high-pressure hysteresis largely depends on pore structure of coal such as ink-bottle pores, especially for the studied sample YZG2. Besides, pore analyses by low-temperature nitrogen adsorption method show that the pre-adsorbed water has remarkable influence on micropores smaller than 10 nm, and the micropores smaller than 4 nm almost disappear for water-equilibrated coals, which is closely related to the formed water clusters and capillary water in pore throats. This finding reveals that more methane gas can only be adsorbed in the larger pores of moist coal, and provides an explanation for water weakening methane adsorption capacity.Amoxicillin (AMX) is a widely used antibiotic, which induces harmful effects to nature via bioaccumulation and persistence in the environment if discharged untreated into water bodies. In the current study, a novel bionanocomposite, bismuth oxyiodide-chitosan (BiOI-Ch), was synthesized by a facile precipitation method and its amoxicillin (AMX) adsorption capacity in the presence of ultrasonic waves has been explored. Multiple batch experiments were performed to achieve the optimum operational parameters for maximum adsorption of AMX and the obtained results were as follows pH 3, 80 mg g-1 AMX concentration, 1.7 g L-1 adsorbent dose, temperature 298 K and ultrasonication time 20 min. Composite removed approximately 90% AMX from the solution under optimized conditions, while the maximal adsorption capacity was determined to be 81.01 mg g-1. BiOI-Ch exhibited superior adsorption capacity as compared to pure BiOI (33.78 mg g-1). see more To understand the dynamics of reaction, several kinetic and isotherm models were also examined. The adsorption process obeyed pseudo-second-order kinetic model (R2 = 0.98) and was well fitted to Freundlich isotherm (R2 = 0.99). The addition of biowaste chitosan to non-toxic bismuth-based nanoparticles coupled with ultrasonication led to enhanced functional groups as well as surface area of the nanocomposite resulting in superior adsorption capacity, fast adsorption kinetics and improved mass transfer for the removal of AMX molecules. Thus, this study demonstrates the synergistic effect of ultrasonication in improved performance of novel BiOI-Ch for potential application in the elimination of persistent and detrimental pollutants from industrial effluent after necessary optimization for large-scale operation.Alginate lyases are epitomized as prospective therapeutic mediators for treating Pseudomonas aeruginosa infections, particularly in the cystic fibrosis airway through alginate degradation thereby improving the efficacy of anti-pseudomonal antibiotics. Investigation of metal-binding residues is significant for expounding the ion specificity of an enzyme and will provide a broad understanding of the potential roles of metal ions in enzyme function and stability. However, experimental analysis of metal ion-binding sites in proteins is time consuming and expensive. Concerning the clinical importance of this therapeutic enzyme, the present study was focused on the prediction and characterization of metal ion-binding sites of different alginate lyases reported in the literature through a computational approach using a Metal Ion-Binding Site Prediction and Docking Server. 3D structures of different alginate lyase from different organisms were retrieved, and these retrieved proteins were docked with twelve different metal ions such as Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+. The binding affinity and interacting amino acids for alginate lyases produced by different microorganisms were compared and analysed. Further analysis on active site residues of reported alginate lyase and subsequent experiments will reveal the function of different metal ions in enhancing or inhibiting the catalysis of alginate lyase and will help in exploiting the enzyme as an efficient therapeutic agent as well as for industrial applications.In the historical mysteries and present pandemic situation, the use of citrus fruits makes it rise high among other fruits. Citrus has a significant role in dietary and medicinal purposes from time immemorial and widely acknowledged for its therapeutic properties. Citrus megaloxycarpa Lush. is an unspecified sibling of the citrus family. The present work highlights the biochemical, antimicrobial, and anticancerous potential of cryptic species indigenous to Northeast India. The research was done on peel; P(L1) and pulp; Pu(L2) extracts of ripe large and peel; P(L1) and pulp; Pu(L2) extracts unripe small varieties respectively. The extract of the Pu(L2) has the highest total soluble sugar (9.174±0.006741 μg/ml) whereas the extract of P(S1) demonstrated high protein concentration (8.074±0.0567 μg/ml). The total carbohydrate content also varied in the extracts; the extract of P(L1) showed (8.326±0.003844 μg/ml). P(L1) have high free amino acid content (24.35±0.0225μg/ml) and high free fatty acid exhibited on P(L2) (0.
Website: https://www.selleckchem.com/products/blu-554.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team