Notes
Notes - notes.io |
2 mg L-1 by NTP to 1.6 × 10-3 mg L-1 by NTP-catalysis. With the help of in situ FT-IR, it was believed that catalysts not only accelerated the adsorption and degradation of pollutants but also utilized ozone to involve this process. At last, a plausible explanation on binary coexistence effect under different conditions had been suggested and discussed.
Evidence on the acute effect of short-term exposure to nitrogen dioxide (NO
) on years of life lost (YLL) is rare, especially in multicity setting.
We conducted a time series study among 48 major Chinese cities covering more than 403 million people from 2013 to 2017. The relative percentage changes of NO
-YLL were estimated by generalized additive models in each city, then were pooled to generate average effects using random-effect models. In addition, stratified analyses by individual demographic factors and temperature as well as meta-regression analyses incorporating city-specific air pollutant concentrations, meteorological conditions, and socioeconomic indicators were performed to explore potential effect modification.
A 10μg/m
increase in two-day moving average (lag01) NO
concentration was associated with 0.64% (95% CI 0.47%, 0.81%), 0.47% (95% CI 0.27%, 0.68%), and 0.68% (95% CI 0.34%, 1.02%) relative increments in YLL due to nonaccidental causes, cardiovascular diseases (CVD), and respiratory diseases (RD), respectively. These associations were generally robust to the adjustment of co-pollutants, except for NO
-CVD that might be confounded by fine particulate matter. The increased YLL induced by NO
were more pronounced in elderly people, hotter days, and cities characterized by less severe air pollution or higher temperature.
Our results demonstrated robust evidence on the associations between NO
exposure and YLL due to nonaccidental causes, CVD, and RD, which provided novel evidence to better understand the disease burden related to NO
pollution and to facilitate allocation of health resources targeting high-risk subpopulation.
Our results demonstrated robust evidence on the associations between NO2 exposure and YLL due to nonaccidental causes, CVD, and RD, which provided novel evidence to better understand the disease burden related to NO2 pollution and to facilitate allocation of health resources targeting high-risk subpopulation.Select phenols are known to possess hormone-disrupting properties, but no previous study has addressed the potential effects of prenatal exposure to phenol mixtures on fetal reproductive hormones and children's second to fourth digit (2D 4D) ratio, a marker for in utero testosterone (T) exposure. We aimed to explore interrelations of prenatal phenol exposures individually and in mixtures, cord serum reproductive hormones, and 2D 4D ratio of children aged 10 years. Urinary 11 phenol concentrations were determined from 392 pregnant women participating in a longitudinal birth cohort. selleck compound We estimated associations of prenatal phenol exposures individually and in mixtures with cord reproductive hormones and children's 2D4D ratio using three statistical approaches, including generalized linear models (GLMs), elastic net regression (ENR) models and Bayesian kernel machine regression (BKMR) models. In female newborns, the three models showed that maternal triclosan (TCS) concentrations were significantly negatively associated with cord serum T levels [regression coefficient (β) = -0.076, 95% confidence interval (CI) 0.138, -0.013; p = 0.018]. Additionally, maternal urinary bisphenol A (BPA) levels were related to decreases in 2D4D ratio of the left hand in girls by GLMs (β = -0.003, 95% CI 0.007, -0.001; p = 0.024) and ENR models, but not BKMR models. We provided evidence that prenatal TCS exposure predicted lower cord serum T levels, and maternal BPA exposure was related to decreased 2D4D ratio of the left hand in females.Nanoscale zero-valent iron (nZVI) settled slowly and incompletely in a nano-iron reactor (NIR) in wastewater treatment, and the effluent quality and processing capacity of nZVI were degenerated. Herein, three types of polyacrylamide (PAM), anionic-APAM (nZVIAPAM), cationic-CPAM (nZVICPAM), and nonionic-NPAM (nZVINPAM)) were applied to modify the nZVI (nZVIPAM), which were proved to enhance aggregation and sedimentation in the gravity settling clarifier of NIR. PAM modification lead to aggregate by forming large agglomerates. The median sizes of aggregates were 32, 194, 168 and 133 μm respectively for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM. Under quiescent conditions, bare nZVI needed 5 min to reach sedimentation equilibrium, while nZVIPAM just within 1 min nZVICPAM settled more quickly and completely than nZVINPAM and nZVIAPAM. The Fe concentration in the dynamic flow NIR effluent could keep a low level for 8 h for nZVIPAM, while bare nZVI for 6 h. Iron concentration was 3.11, 0.037, 0.93, and 1.20 mg·L-1 for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM after 8-h-reaction. Meanwhile, the reactivity of nZVIPAM was kept much longer for lead removal in the NIR. Results demonstrated PAM modifications (especially CPAM) provided a reliable solution for nZVI aggregation and sedimentation in wastewater treatment.Polyhedral CoOx was synthesized by calcination of Co-based metal-organic framework ZIF-67 and highly dispersed Pt nanoparticles were successfully loaded on CoOx. The catalytic results showed that Ptnano/CoOx had the best activity and stability. As compared with conventional Co3O4, polyhedral CoOx showed more excellent catalytic oxidation performance of toluene, which was related to enhanced oxygen mobility, defective structure and rich active oxygen species provided by Polyhedral CoOx. Moreover, Pt-CoOx metal-support interaction enhanced the dispersion of Pt species and showed more Pt0 ratio. It was reasonable that the gaseous O2 can be activated directly or moved into the catalyst's surface to form oxygen cycle.Volatile losses of hydrophobic organic contaminants from a confined disposal facility (CDF) containing dredged contaminated sediments is of substantial concern to surrounding communities. A partitioning passive sampling approach using polyoxymethylene (POM) was applied to measure long-term average (weeks to months) air concentrations resulting from evaporation at a CDF. Measurements at 10 locations surrounding the CDF using the POM air samplers indicated that the highest concentrations of ΣPCBs∼13 ng/m3 and ΣPAHs ∼65 ng/m3 were measured during an active dredge material placement period when the average temperature was 23 °C. The measurements were dominated by the more volatile, lower molecular weight compounds of each type. Partitioning to the POM during the post dredge material placement period with average temperature of 5 °C was corrected for temperature and the measured ∑PCBs and ∑PAHs were ∼3 ng/m3 and 45 ng/m3 respectively. The partitioning passive sampling measurements agreed well with the available weekly 24-h high-volume air samples (HVAS) averaged over the POM equilibration time for lower congener number PCBs (15, 18, 20/28 and 31) and naphthalene but were as much as 10 times lower than HVAS for high molecular weight PAHs.
Read More: https://www.selleckchem.com/products/ly2606368.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team