Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.Background NSAIDs are one of the most frequently used medications and a risk factor for AKI. However, the optimal time of NSAIDs in patients with AKI is unknown. Methods A secondary analysis of a multicenter, randomized clinical trial including adult inpatients with acute kidney injury was performed. Univariate, multivariate, and subgroup analyses were used to explore the impact of NSAIDs during the early onset of AKI on the outcome of patients with AKI. Results A total of 6,030 patients with AKI were enrolled in the study. Following are the findings of the multi-factor analysis NSAID treatments within 72 and 24 h before the onset of AKI were not associated with AKI progression, dialysis, or discharge from dialysis; only NSAID treatment within the 24-h onset of AKI was associated with these outcomes, and their OR values were independently 1.50 (95% CI 1.02-2.19, p = 0.037), 4.20 (95% CI 1.47-11.97, p = 0.007), and 0.71 (95% CI 0.54-0.92, p = 0.011); only NSAID treatment within the 24-h onset of AKI would decrease the 14-day mortality, and the OR value was 0.52 (95% CI 0.33-0.82, p = 0.005). The subgroup analysis revealed that in patients with age ≥65 years, CKD (chronic kidney disease), congestive heart failure, hypertension, and liver disease, NSAID treatments within the 24-h onset of AKI would deteriorate the outcome of patients with AKI. Conclusion Before an early onset of AKI, NSAID treatment might be safe, but during the onset of AKI, even early NSAID treatment would deteriorate the outcome of patients with AKI.Liver fibrosis is a repair process of chronic liver injuries induced by toxic substances, pathogens, and inflammation, which exhibits a feature such as deposition of the extracellular matrix. The initiation and progression of liver fibrosis heavily relies on excessive activation of hepatic stellate cells (HSCs). The activated HSCs express different kinds of chemokine receptors to further promote matrix remodulation. The long-term progression of liver fibrosis will contribute to dysfunction of the liver and ultimately cause hepatocellular carcinoma. The liver also has abundant innate immune cells, including DCs, NK cells, NKT cells, neutrophils, and Kupffer cells, which conduct complicated functions to activation and expansion of HSCs and liver fibrosis. Autophagy is one specific type of cell death, by which the aberrantly expressed protein and damaged organelles are transferred to lysosomes for further degradation, playing a crucial role in cellular homeostasis. Autophagy is also important to innate immune cells in various aspects. The previous studies have shown that dysfunction of autophagy in hepatic immune cells can result in the initiation and progression of inflammation in the liver, directly or indirectly causing activation of HSCs, which ultimately accelerate liver fibrosis. Given the crosstalk between innate immune cells, autophagy, and fibrosis progression is complicated, and the therapeutic options for liver fibrosis are quite limited, the exploration is essential. Herein, we review the previous studies about the influence of autophagy and innate immunity on liver fibrosis and the molecular mechanism to provide novel insight into the prevention and treatment of liver fibrosis.Cancer cell lysosomes contain various hydrolases and non-degraded substrates that are corrosive enough to destroy cancer cells. However, many traditional small molecule drugs targeting lysosomes have strong side effects because they cannot effectively differentiate between normal and cancer cells. Most lysosome-based research has focused on inducing mild lysosomal membrane permeabilization (LMP) to release anticancer drugs from lysosomal traps into the cancer cell cytoplasm. In fact, lysosomes are particularly powerful "bombs". Achieving cancer cell-selective LMP induction may yield high-efficiency anticancer effects and extremely low side effects. Nanodrugs have diverse and combinable properties and can be specifically designed to selectively induce LMP in cancer cells by taking advantage of the differences between cancer cells and normal cells. Although nanodrugs-induced LMP has made great progress recently, related reviews remain rare. Herein, we first comprehensively summarize the advances in nanodrugs-induced LMP. Next, we describe the different nanodrugs-induced LMP strategies, namely nanoparticles aggregation-induced LMP, chemodynamic therapy (CDT)-induced LMP, and magnetic field-induced LMP. Finally, we analyze the prospect of nanodrugs-induced LMP and the challenges to overcome. We believe this review provides a unique perspective and inspiration for designing lysosome-targeting drugs.The full range of cell functions is under-determined in most human diseases. The evidence that somatic cell competition and clonal imbalance play a role in non-neoplastic chronic disease reveal a need for a dedicated effort to explore single cell function if we are to understand the mechanisms by which cell population behaviors influence disease. It will be vital to document not only the prevalent pathologic behaviors but also those beneficial functions eliminated or suppressed by competition. An improved mechanistic understanding of the role of somatic cell biology will help to stratify chronic disease, define more precisely at an individual level the role of environmental factors and establish principles for prevention and potential intervention throughout the life course and across the trajectory from wellness to disease.Background Biologics are used to treat moderate-to-severe psoriasis, and persistence to biologics may reflect clinical effectiveness. Limited information describing how biologics are used in patients with moderate-to-severe psoriasis in Asian countries is available. We conducted a population-based, retrospective, new user cohort study using the National Health Insurance Research Database (NHIRD) in Taiwan to assess treatment persistence and adherence to biologics. Methods Adults with a diagnosis of psoriasis between 01 January 2015 and 31 December 2017 were identified in the NHIRD (ICD-9-CM 696.1; ICD-10 L40.0). New users were patients who initiated treatment with etanercept, adalimumab, ustekinumab or secukinumab between 01 January 2015 and 31 December 2017. All eligible patients were followed until 31 December 2018, death or disenrollment. Kaplan-Meier analysis was conducted to estimate persistence of treatment for index biologics. A Cox-proportional hazard regression model was used to compare risks of biol.0% for ustekinumab, 98.1%/not calculated for secukinumab, 89.4%/83.1% for etanercept, and 70.8%/59.4% for adalimumab. Limitations Clinical improvement and response to treatment data were not available. Conclusion There was relatively high persistence amongst biologic users with psoriasis in Taiwan. There is a trend towards greater persistence of ustekinumab compared to other biologics, the magnitude of which depends on the treatment gap used for its calculation. This study provides real-world evidence that may facilitate optimal treatment choice.Objective The aim was to evaluate the efficacy and safety of vancomycin or daptomycin (VAN/DAP), antistaphylococcal β-lactam (ASBL), trimethoprim-sulfamethoxazole (TMP-SMX), and combination therapy of VAN/DAP + ASBL in the management of methicillin-resistant Staphylococcus aureus (MRSA). Methods Databases including PubMed, Cochrane Library, Embase database, and google scholar were searched on 1 September 2021. The randomized control trials (RCTs) and comparable clinical studies of VAN/DAP, VAN/DAP + ASBL, ASBL, and TMP-SMX in the management of MRSA were identified. A network meta-analysis was conducted with STATA 14.0. Results Seven RCTs and two matched cohorts with 1,048 patients were included in the analysis. The pooled results showed that VAN/DAP + ASBL had a significantly lower rate of persistent bacteremia >3 days than VAN/DAP alone [OR0.46, 95%CI (0.26, 0.81), p 3 days, duration of bacteremia, microbiological treatment failure, and relapsed bacteremia) but slightly higher adverse events than VAN/DAP alone. No obvious differences in the comparisons of VAN/DAP vs. ASBL, and VAN/DAP vs TMP-SMX in the analyzed outcomes. The ranking results revealed that ASBL and TMP-SMX did not have better efficacy or lower adverse events compared with the treatment of VAN/DAP. Conclusion The efficacy of VAN/DAP + ASBL was slightly but not significantly better than VAN/DAP alone in the management of MRSA.The complexity of chemical components of herbal medicines often causes great barriers to toxicity research. In our previous study, we have found the critical divergent hepatotoxic potential of a pair of stilbene isomers in a famous traditional Chinese herb, Polygonum multiflorum (Heshouwu in Chinese). However, the high-throughput in vitro evaluation for such stereoisomerism-dependent hepatotoxicity is a critical challenge. In this study, we used a hepatic organoids-based in vitro hepatotoxic evaluation system in conjunction with using high content imaging to differentiate in vivo organ hepatotoxicity of the 2,3,5,4'-tetrahydroxy-trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer (cis-SG). By using such an organoid platform, we successfully differentiated the two stereoisomers' hepatotoxic potentials, which were in accordance with their differences in rodents and humans. The lesion mechanism of the toxic isomer (cis-SG) was further found as the mitochondrial injury by high-content imaging, and its hepatotoxicity could be dose-dependently inhibited by the mitochondrial protective agent. LJI308 These results demonstrated the utility of the organoids-based high-content imaging approach in evaluating and predicting organ toxicity of natural products in a low-cost and high-throughput way. It also suggested the rationale to use long-term cultured organoids as an alternative toxicology platform to identify early and cautiously the hepatotoxic new drug candidates in the preclinical phase.Background Multidrug-resistant tuberculosis (MDR-TB) is a growing public health problem. Treatment regimens used against MDR-TB are costly, prolonged, and associated with more side effects as compared with the drug-susceptible tuberculosis. This study was framed to determine the incidence of adverse drug events, risk factors, and their management in MDR-TB patients. Methods This prospective follow-up cohort study was conducted at the site of programmatic management of drug-resistant TB located at the Pakistan Institute of Medical Sciences, Islamabad. All patients, irrespective of their age, gender, and ethnicity, were included in the study. Adverse drug events were observed in patients at different time points during the study. Patients enrolled for the treatment from January 2018 were prospectively followed till December 2020 up to their end treatment outcomes. Results Out of 126 MDR-TB patients enrolled for treatment, 116 met the inclusion criteria and were included in the final analysis. Most patients (50.
My Website: https://www.selleckchem.com/products/lji308.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team