Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Background Hypotension commonly occurs with spinal anesthesia during cesarean delivery. Norepinephrine is an alternative to phenylephrine which can be used to prevent or treat hypotension, with better maintained cardiac output and less bradycardia. However, an appropriate initial prophylactic infusion dose of norepinephrine remains unclear. The aim of this study was to describe the dose-response relationship of prophylactic norepinephrine infusion during cesarean delivery under combined spinal-epidural anesthesia. Methods We performed a prospective, randomized, double-blinded dose-finding study. One hundred patients undergoing elective cesarean delivery were randomly assigned to receive an infusion of norepinephrine at 0, 0.025, 0.05, 0.075 or 0.1 μg/kg/min initiated immediately after intrathecal injection of 10 mg bupivacaine combined with 5 µg sufentanil. An effective dose was considered when there was no hypotension (systolic blood pressure less then 90 mm Hg or less then 80% of baseline) during the time period from injection of intrathecal local anesthetic to delivery of the neonate. The primary aim was to determine the dose-response relationship of norepinephrine to prevent spinal anesthesia-induced hypotension. The median effective dose (ED50) and 95% effective dose (ED95) for norepinephrine were calculated utilizing probit analysis. Results The proportion of patients with hypotension was 80, 70, 40, 15 and 5% at norepinephrine doses of 0, 0.025, 0.05, 0.075 and 0.1 μg/kg/min, respectively. The ED50 and ED95 were 0.042 (95% CI, 0.025-0.053) µg/kg/min and 0.097 (95% CI, 0.081-0.134) µg/kg/min, respectively. There were no differences in the Apgar scores (p = 0.685) or umbilical arterial pH (p = 0.485) measurements of the newborns among the treatment groups. Conclusion A norepinephrine infusion of 0.1 μg/kg/min as an initial starting dose was effective for the prevention of spinal-induced hypotension.Osteoarthritis (OA) is a prevalent degenerative joint disease. Its development is highly associated with inflammatory response and apoptosis in chondrocytes. Selonsertib (Ser), the inhibitor of Apoptosis Signal-regulated kinase-1 (ASK1), has exhibited multiple therapeutic effects in several diseases. However, the exact role of Ser in OA remains unclear. Herein, we investigated the anti-arthritic effects as well as the potential mechanism of Ser on rat OA. Our results showed that Ser could markedly prevent the IL-1β-induced inflammatory reaction, cartilage degradation and cell apoptosis in rat chondrocytes. Meanwhile, the ASK1/P38/JNK and NFκB pathways were involved in the protective roles of Ser. Furthermore, intra-articular injection of Ser could significantly alleviate the surgery induced cartilage damage in rat OA model. In conclusion, our work provided insights into the therapeutic potential of Ser in OA, indicating that Ser might serve as a new avenue in OA treatment.Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.To elucidate current domestic factors influencing pharmacogenomics (PGx) implementation and its future in China, we conducted a questionnaire survey on PGx applications and testing. A questionnaire-based survey was created on the popular online professional survey platform "Wenjuanxing" (www.wjx.cn) and performed via the social media platform WeChat. Among 422 participants, there were physicians (27.7%), pharmacists (31.3%), and researchers (41.0%). We found that less than 50% of physicians were aware of the importance of PGx in drug therapy, while over 50% of pharmacists and researchers recognized the importance. Only 38.5% of physicians, 40.9% of pharmacists, and 55.5% of researchers concurred that PGx analysis could lower the economic burdens for patients. However, most of the responders affirmed that PGx should be effectively implemented in clinical practices. A lack of sector standards, a lack of clinical research, and a lack of guidelines were found to be the major factors for hindering PGx clinical application. Among drugs associated with PGx assays, the most common were warfarin and clopidogrel. Although PGx research has advanced rapidly in recent years in mainland China, the clinical implementation of PGx has a long way to go.Vascular adhesion protein-1 (VAP-1) is a semicarbazide-sensitive amine oxidase (SSAO), whose enzymatic activity regulates the adhesion/exudation of leukocytes in/from blood vessels. Due to its abundant expressions in vascular systems and prominent roles in inflammations, increasing attentions have been paid to the roles of VAP-1/SSAO in atherosclerosis, a chronic vascular inflammation that eventually drives clinical cardiovascular events. Clinical studies have demonstrated a potential value of soluble VAP-1 (sVAP-1) for the diagnosis and prognosis of cardiovascular diseases. Recent findings revealed that VAP-1 is expressed in atherosclerotic plaques and treatment with VAP-1 inhibitors alleviates the progression of atherosclerosis. This review will focus on the roles of VAP-1/SSAO in the progression of atherosclerotic lesions and therapeutic potentials of VAP-1 inhibitors for cardiovascular diseases.Background Metformin extended-release (XR) is a once-daily alternative conventional immediate-release (IR) tablet for adults with type 2 diabetes. Aim This study aimed to investigate the knowledge, attitude, and practice of the use of metformin XR tablets among clinicians. Methods We conducted a cross-sectional online survey among endocrinologists, general practitioners, and internists, who are taking routine care of adults with type 2 diabetes in health institutes at all levels in Sichuan Province, China. We designed an online questionnaire including the demographic information, knowledge, attitude, and practice about metformin XR tablets. Results We included 158 clinicians, 67.7% of whom were females and 63.9% were from tertiary hospitals. The median age was 39.6 years (ranging between 22 and 62 years). Only 8.2% of the clinicians correctly answered the knowledge questions, 82.3% and 62.0% of the responders assumed that metformin XR had superior efficacy and tolerability to the metformin IR, respectively. Only 46.8% of the clinicians prescribed the metformin XR based on the patient's preference for once daily frequency. Conclusion The knowledge, attitude, and practice of metformin XR among Chinese clinicians need improving. Clinicians need credible information to support their clinical decision-making regarding metformin XR.Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. Selleck Epigenetic inhibitor The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.The presentation and progression of Parkinson's disease (PD) are not uniform, but the presence of rapid eye movement sleep behavior disorder (RBD) in PD patients may indicate a worse prognosis than isolated PD. Increasing evidence suggests that patients with comorbid PD and RBD (PD-RBD) are more likely to develop cognitive impairment (CI) than those with isolated PD; however, the predictors of CI in PD-RBD patients are not well understood. This study aimed to develop a prognostic model for predicting mild cognitive impairment (MCI) in PD-RBD patients. The data of PD-RBD patients were extracted from the Parkinson's Progression Markers Initiative study (PPMI), and the sample was randomly divided into a training set (n = 96) and a validation set (n = 24). PD-MCI as defined by the level II Movement Disorder Society (MDS) diagnostic criteria was the outcome of interest. The demographic features, clinical assessments, dopamine transporter (DAT) imaging data, cerebrospinal fluid (CSF) analyses and genetic data of PD patients were considered candidate predictors. We found that performance on the University of Pennsylvania Smell Identification Test (UPSIT), the mean signal and asymmetry index of the putamen on DAT imaging, p-tau/α-syn and p-tau in CSF, and rs55785911 genotype were predictors of PD-MCI in PD-RBD patients. A C-index of 0.81 was obtained with this model, and a C-index of 0.73 was obtained in the validation set. Favorable results of calibrations and decision curve analysis demonstrated the efficacy and feasibility of this model. In conclusion, we developed a prognostic model for predicting MCI in PD-RBD patients; the model displayed good discrimination and calibration and may be a convenient tool for clinical application. Larger samples and external validation sets are needed to validate this model.
Here's my website: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team