Notes
![]() ![]() Notes - notes.io |
Studies focused on the ubiquitous emotion of sadness demonstrate substantial variability in physiological responses during sadness elicitation, with no consensus regarding the physiological pattern of sadness. Variability in findings could be attributed to (a) the use of different induction techniques across studies or (b) the existence of subtypes of sadness with distinct physiological activation patterns. Typically, studies have used text and film to elicit sadness. However, virtual reality (VR) confers advantages over more traditional methods by allowing individuals a subjective sense of "being there" or presence. We compared participants' physiological responses to the same narrative presented via VR, Film and Story (n = 20 each) and collected their subjective responses to the stimuli. Results confirmed that participants in all conditions experienced the discrete emotion of sadness. Moreover, participants in the VR condition experienced the highest degree of presence. Regarding psychophysiological responses, participants in the VR condition had the lowest degree of baseline-adjusted parasympathetic activation in comparison to participants in the Film condition. Furthermore, while participants in the VR group showed diminished baseline-adjusted respiration rate and parasympathetic activation with an increase in presence, the opposite pattern was true for participants in the other conditions. The data suggest that the VR condition may elicit an activating pattern of sadness; whereas Film and Story conditions may elicit a deactivating pattern of sadness. Our results have implications for research using the discrete model of emotion, highlighting that different emotion elicitation techniques may result in differing expressions of what is considered a unitary emotion.Soil fungal communities, consisting of a few abundant taxa but many rare taxa, play critical roles in terrestrial ecosystem functioning. However, little is known about ecological processes governing the assembly of abundant and rare sub-communities in response to agricultural intensification, which can threaten soil biodiversity. Here, we performed a regional-scale survey of soil fungal community assembly in different land-use types with an increasing gradient of agricultural intensity, i.e., open field cultivation of main crops (CF) or vegetables (VF), and greenhouse cultivation of vegetables (VG). Results showed that greenhouse cultivation decreased the alpha diversity and spatial turnover rate of soil fungal community. The abundant sub-community was more sensitive to land-use conversion than the rare sub-community. Partitioning the Bray-Curtis dissimilarity found that balanced variation in abundance (i.e., the substitution of individuals by the same number of individuals of a different species), rather than abundance gradients (i.e., one assemblage is a subset of another), accounted for the major shift in fungal beta diversity. Moreover, greenhouse cultivation reduced potential inter-species interactions, and the rare sub-community plays an important role in fungal co-occurrence network. Conversions from CF to VF or VG promoted deterministic processes, which was, to a large extent, associated with changes in soil physicochemical properties. However, conversion from VF to VG decreased deterministic processes. Compared with the rare sub-community, the abundant sub-community with wider niche breadths was more influenced by stochastic processes. Changes in the assembly processes induced by land-use conversion differed between abundant and rare sub-communities. Overall, abundant and rare sub-communities exhibited differential responses to land-use conversion and rare taxa might play a crucial role in maintaining the stability of fungal community.The connection among genome expression, proteome alteration, metabolism regulation and phenotype change under environmental stresses is very vague. It is a tough task for the traditional research approaches to reveal the related scientific mechanisms of the above connection at molecular and systematic levels. Proteomics approach is an insightful tool for revealing the biological functions, metabolic networks and functional protein interaction networks of cells and organisms under stresses at the systematic level. The purpose of this review is to provide an insightful guideline on how to set up a proteomic investigation for revealing biomolecule mechanisms, protein biomarkers and metabolism networks related to stress response, pollutant recognition, transport and biodegradation, and providing an insightful high-throughput approach for screening functional enzymes and effective microbes based on bioinformatics and functional verification method. Furthermore, the toxicity evaluation of pollutants and byproducts by proteomics approaches provides a scientific insight for early diagnosis of ecological risk and determination of the effectiveness of pollutant treatment techniques.Soils are among the most densely inhabited and biodiverse habitats on our planet, and many important soil ecosystem services depend on the health condition of the native soil fauna. Anthropogenic stress such as chemical pollution acting on the native soil fauna might jeopardize these functions. Laboratory microcosm tests are an appropriate tool for assessing the risk of chemicals on the native soil fauna and can be regarded as intermediate tier tests, bridging the gap between single species toxicity tests and field testing. Nematodes are one of the most abundant and divers soil invertebrates, and as such native nematode communities might be suitable for ecotoxicological assessments in laboratory microcosm set ups. In order to test such a small-scale (30 g soil) microcosm system, two different chemicals (zinc and pyrene) were assessed in various soil types for their effects on the respective native nematode communities. Various community parameters such as total nematode density, genus richness and genus composition, as well as trait-related indices (e.g. maturity index) were monitored over a period of 8-10 weeks. The response of the nematode communities strongly varied between soil types, and these differences were more pronounced for Zn than for pyrene. Interestingly, the structure of the respective native nematode communities was shown to play a larger role for explaining the varying toxic effects than soil properties governing the bioavailability of the spiked chemicals. We demonstrated that exposure of natural nematode communities in their original soil matrix to the metal zinc and to pyrene under climatically highly controlled conditions resulted in quantitatively and qualitatively distinct responses. Upon comparison of various community indices, the maturity index was shown to be the most sensitive toxicity endpoint for all tested soils and chemicals.Climate change will modify the spatiotemporal distribution of water resources in the future. Snow availability in alpine systems plays an important role for water dependent ecosystems, water demand supply, tourism, and hydropower. The assessment of the impact of climate change (and its uncertainty) on snow is a key subject in determining suitable adaptation strategies in these systems. In this paper, we propose a new methodology for assessing the impact of climate change on snow cover areas (SCAs). We have developed the Monte Carlo method analysis to combine several approaches to generate multiple input series and propagate them within a previously calibrated SCA cellular automata model. This generates potential future local scenarios from regional climate models. These scenarios are used to generate multiple series by using a stochastic weather generator. The methodology also includes an approach to correct the outputs bias of the stochastic weather generators when it is needed. Finally, the historical and the corrected multiple future weather series are used to simulate the impact on the SCA by using a cellular automata model. It is a novel approach that allows us to quantify the impact and uncertainty of climate change on the SCA. The methodology has been applied to the Sierra Nevada (southern Spain), which is the most southern alpine mountain range in Europe. In the horizon 2071-2100, under the RCP 8.5 emission scenario, we estimate mean reductions of SCA that will move from 42 to 66% from December to February. The reductions are higher for the rest of the year (from March to May reductions of between 47 and 95% and from September to November reductions of between 54 and 100%). These SCA changes may be roughly equivalent to an elevation shift of snow of around 400 m.Phosphates and organophosphorus cause environmental pollution, and excessive phosphate leads to water eutrophication. Glyphosate, an organophosphorus herbicide, harms the environment and human health. In this study, regenerable magnetic AL/Fe3O4/La(OH)3 adsorbents were developed by modifying Fe3O4 and La(OH)3 on aminated lignin (AL) for phosphate and glyphosate removal. The adsorption capacity for phosphate and glyphosate reached 60.36 mg g-1 and 83.87 mg g-1 when the initial concentrations were 150 mg L-1 and 250 mg L-1, respectively. The thermodynamic data showed that adsorption is a spontaneous and endothermic process. selleck products Adsorption can be applied at pH values ranging from 3 to 11 and is more suitable under acidic conditions. Fe3O4 and La(OH)3 both enhanced the adsorption capacities of phosphate and glyphosate. Phosphate and glyphosate compete slightly when coexisting in the adsorption process at low concentrations. Due to the magnetic properties of Fe3O4, the adsorbents can be separated rapidly and effectively with an external magnetic field. 89% adsorption capacity remained after four adsorption-desorption recycles. Thus, AL/Fe3O4/La(OH)3 shows potential for phosphate and glyphosate removal as an effective and reusable adsorbent.Eco-hydrological processes affect the chemical weathering carbon sink (CS) of rocks. However, due to data quality limitations, the magnitude of the CS of rocks and their responses to eco-hydrological processes are not accurately understood. Therefore, based on Global Erosion Model for CO2 fluxes (GEM-CO2 model), hydrological site data, and multi-source remote sensing data, we produced a 0.05° × 0.05° resolution dataset of CS for 11 types of rocks from 2001 to 2018. The results show that the total amount of CS of global rocks is 0.32 ± 0.02 Pg C, with an average flux of 2.7 t C km-2 yr-1, accounting for 53% and 3% of the "missing" carbon sink and fossil fuel emissions, respectively. This is 23% higher than previous research results, which may be due to the increased resolution. Although about 60% of the CS of global rocks are in a stable state, there are obvious differences among rocks. For example, the CS of carbonate rocks exhibited a significant increase (0.30 Tg C/yr), while the CS of siliceous clastic sedimentary rocks exhibited a significant decrease (-0.06 Tg C/yr). Although temperature is an important factor affecting the CS, the proportion of soil moisture in arid and temperate climate zones is higher (accounting for 24%), which is 3.6 times that of temperature. Simulations based on representative concentration pathways scenarios indicate that the global CS of rocks may increase by about 28% from 2050 to 2100. In short, we produced a set of high-resolution datasets for the CS of global rocks, which makes up for the lack of datasets in previous studies and improves our understanding of the magnitude and spatial pattern of the CS and its responses to eco-hydrological processes.
Read More: https://www.selleckchem.com/products/daurisoline.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team