NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Ferrihydrite enrichment within the rhizosphere regarding unsaturated earth improves nutrient maintenance although restricting arsenic along with uranium place customer base.
This study provides a policy basis for promoting environmental governance and green technology innovation in China's heavily polluting industries.Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.In water-limited areas, revegetation of abandoned croplands may lead to extensive land-use changes and considerable variations on soil carbon (C) and nitrogen (N). However, the impact of land-use patterns (i.e., the spatial combinations of different land-use types) on soil C and N variations following revegetation remains unclear. In this study, we measured soil organic carbon (SOC), total carbon (TC), and total nitrogen (TN) stocks to a depth of 200 cm in grassland (GL), shrubland (SL), young forestland (YF), and mature forestland (MF) under four land-use patterns in a catchment located in the Chinese Loess Plateau. The highest SOC, TC and TN stocks occurred in MF and the lowest was found in GL. Compared to every single land-use type, soil C and N stocks significantly increased under different land-use patterns. The highest SOC stock (6.51 kg m-2) was found in the GL-YF-SL pattern, and the highest TC stock (47.25 kg m-2) and TN stock (0.70 kg m-2) were both observed in the MF-YF pattern. SOC stocks showed significantly positive correlations with TC and TN stocks under different land-use patterns (p less then 0.05), except for the GL-MF. The soil C-N interactions were stronger in the MF-SL and GL-YF-SL patterns compared to the GL-MF and MF-SL. Redundancy analysis indicated that the SOC, TC, and TN variations were well explained by aboveground biomass and land-use patterns, with accumulated variance of 41.6% and 54.2% in Axis 1 and Axis 2, respectively. The differences of soil C and N accumulation among land-use patterns were mostly related to different vegetation coverage and the intensity of soil erosion. This study indicates that creating proper spatial distribution of land-use types on hillslopes could benefit soil C and N sequestrations and ecosystem restoration in semi-arid environments.The process of nitrate dissimilation to ammonium (DNRA) is an important way for storing nitrogen in nature and DNRA is a key step in efficient recovery of nitrogen in wastewater. A-674563 research buy However, in view of the low conversion efficiency of DNRA, zero-valent iron (ZVI) was used to enhance the DNRA process of Desulfovibrio sp. CMX. ZVI can obviously promote the nitrate/nitrite reduction. The experiment indicated that 5 g/L 300 mesh ZVI could convert 5 mmol/L nitrate or nitrite to ammonium in 48 h or 36 h respectively, and the conversion ratio of NO2- to NH4+ could reach more than 90%. The ZVI provided a suitable growth environment for the Desulfovibrio sp. CMX through chemical reduction of nitrite, production of divalent iron (Fe2+), reduction of oxidation-reduction potential (ORP) and adjustment of pH, which strengthened the DNRA performance. This experiment is advantageous for increasing efficiency of DNRA and provides a new idea for efficient recovery of nitrogen resources.In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P less then 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P less then 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P less then 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.Microalgae biomass has been considered as a potential feedstock for the production of renewable chemicals and biofuels. Microalgae culture combined with wastewater treatment is a promising approach to improve the sustainability of the business model. However, algae culture and harvest account for the majority of the high costs, hindering the development of the microalgae-based wastewater utilization. Cost-effective culture systems and harvesting methods for enhancing biomass yield and reducing the cost of resource recovery have become extremely urgent and important. In this review, different commonly used culture systems for microalgae are discussed; the current harvesting methods with different culture systems have also been evaluated. Also, the inherent characteristics of inefficiency in algae wastewater treatment are elaborated. Current literature collectively supports that a biofilm type device is a system designed for higher biomass productivity, and offers ease of harvesting, in small-scale algae cultivation. Additionally, bio-flocculation, which uses one kind of flocculated microalgae to concentrate on another kind of non-flocculated microalgae is a low-cost and energy-saving alternative harvesting method. These findings provide insight into a comprehensive understanding of integrated culture systems and harvesting methods for microalgae-based wastewater treatment.Although impacts of extremely cold temperatures on human health have been widely studied, adverse effects of other extreme weather phenomena have so far received much less attention. We employed a high-quality long-term mortality time series (1982-2017) to evaluate impacts of extreme winter weather in the Czech Republic. We aimed to clarify whether compound events of extreme weather cause larger impacts on mortality than do each type of extreme if evaluated individually. Using daily data from the E-OBS and ERA5 datasets, we analyzed 9 types of extreme events extreme wind gust, precipitation, snowfall, and sudden temperature and pressure changes. Relative mortality deviations from the adjusted baseline were used to estimate the immediate effect of the selected extreme events on excess mortality. The impact was adjusted for the effect of extreme cold. Extreme events associated with sudden rise of minimum temperature and pressure drops had generally significant impact on excess mortality (3.7% and 1.4% increase). The impacts were even more pronounced if these events occurred simultaneously or were compounded with other types of extremes, such as heavy precipitation, snowfall, maximum temperature rise, and their combinations (increase as great as 14.4%). Effects of some compound events were significant even for combinations of extremes having no significant impact on mortality when evaluated separately. On the other hand, a "protective" effect of pressure increases reduced the risk for its compound events. Meteorological patterns during extreme events linked to excess mortality indicate passage of a low-pressure system northerly from the study domain. We identified extreme winter weather events other than cold temperatures with significant impact on excess mortality. Our results suggest that occurrence of compound extreme events strengthen the impacts on mortality and therefore analysis of multiple meteorological parameters is a useful approach in defining adverse weather conditions.Carbon nanomaterials (CNs), which gain heightened attention as novel materials, are increasingly incorporated into daily products and thus are released into the environment. Limited research on CNs environmental fates lags their industry growth, only few bacteria have been confirmed to biotransform CNs and the mechanism behind has not been revealed yet. In this study, four types of commercial CNs, i.e. graphene oxide (GO), reduced graphene oxide (RGO), single walled carbon nanotubes (SWCNTs), and oxidized (carboxylated) SWCNTs, were selected for investigation. The biotransformation of CNs by Labrys sp. WJW, which could grow with these CNs as the sole carbon source, was investigated. The bacterial transformation was proved by qPCR, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, liquid chromatography/time-of-flight/mass spectrometry, and gas chromatograph-mass spectrometry analyses. The biotransformation resulted in morphology change, defect increase and functional group change of these CNs. Furthermore, the underlying mechanism of CNs biodegradation mediated by extracellular Fenton-like reaction was demonstrated. In this reaction, the OH production was mediated by reduction of H2O2 involved a continuous cycle of Fe(II)/Fe(III). These findings reveal a novel degradation mechanism of microorganism towards high molecular weight substrate, which will provide a new insight into the environmental fate of CNs and the guidance for their safer use.
My Website: https://www.selleckchem.com/products/a-674563.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.