NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Energy-efficient ultrafast nucleation associated with one along with numerous antiferromagnetic skyrmions using in-plane whirl polarized current.
Note that our proposed model can only be regarded as an alternative to fully connected neural networks at present and cannot completely replace the mature deep vision or language models.We observe a common characteristic between the classical propagation-based image matting and the Gaussian process (GP)-based regression. The former produces closer alpha matte values for pixels associated with a higher affinity, while the outputs regressed by the latter are more correlated for more similar inputs. Based on this observation, we reformulate image matting as GP and find that this novel matting-GP formulation results in a set of attractive properties. Tomivosertib in vitro First, it offers an alternative view on and approach to propagation-based image matting. Second, an application of kernel learning in GP brings in a novel deep matting-GP technique, which is pretty powerful for encapsulating the expressive power of deep architecture on the image relative to its matting. Third, an existing scalable GP technique can be incorporated to further reduce the computational complexity to O(n) from O(n³) of many conventional matting propagation techniques. Our deep matting-GP provides an attractive strategy toward addressing the limit of widespread adoption of deep learning techniques to image matting for which a sufficiently large labeled dataset is lacking. A set of experiments on both synthetically composited images and real-world images show the superiority of the deep matting-GP to not only the classical propagation-based matting techniques but also modern deep learning-based approaches.Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.Existing methods on decentralized optimal control of continuous-time nonlinear interconnected systems require a complicated and time-consuming iteration on finding the solution of Hamilton-Jacobi-Bellman (HJB) equations. In order to overcome this limitation, in this article, a decentralized adaptive neural inverse approach is proposed, which ensures the optimized performance but avoids solving HJB equations. Specifically, a new criterion of inverse optimal practical stabilization is proposed, based on which a new direct adaptive neural strategy and a modified tuning functions method are proposed to design a decentralized inverse optimal controller. It is proven that all the closed-loop signals are bounded and the goal of inverse optimality with respect to the cost functional is achieved. Illustrative examples validate the performance of the methods presented.Dense captioning provides detailed captions of complex visual scenes. While a number of successes have been achieved in recent years, there are still two broad limitations 1) most existing methods adopt an encoder-decoder framework, where the contextual information is sequentially encoded using long short-term memory (LSTM). However, the forget gate mechanism of LSTM makes it vulnerable when dealing with a long sequence and 2) the vast majority of prior arts consider regions of interests (RoIs) equally important, thus failing to focus on more informative regions. The consequence is that the generated captions cannot highlight important contents of the image, which does not seem natural. To overcome these limitations, in this article, we propose a novel end-to-end transformer-based dense image captioning architecture, termed the transformer-based dense captioner (TDC). TDC learns the mapping between images and their dense captions via a transformer, prioritizing more informative regions. To this end, we present a novel unit, named region-object correlation score unit (ROCSU), to measure the importance of each region, where the relationships between detected objects and the region, alongside the confidence scores of detected objects within the region, are taken into account. Extensive experimental results and ablation studies on the standard dense-captioning datasets demonstrate the superiority of the proposed method to the state-of-the-art methods.Since most of the existing models based on the microgrids (MGs) are nonlinear, which could cause the controller oscillate, resulting in the excessive line loss, and the nonlinear could also lead to the controller design difficulty of MGs system. Therefore, this article researches the distributed voltage recovery consensus optimal control problem for the nonlinear MGs system with N-distributed generations (DGs), in the case of providing stringent real power sharing. First, based on the distributed cooperative control concept of multiagent systems and the critic neural networks (NNs), a novel distributed secondary voltage recovery consensus optimal control protocol is constructed via applying the backstepping technique and nonzero-sum (NZS) differential game strategy to realize the voltage recovery of island MGs. Meanwhile, the model identifier is established to reconstruct the unknown NZS games systems based on a three-layer NN. Then, a critic NN weight adaptive adjustment tuning law is proposed to ensure the convergence of the cost functions and the stability of the closed-loop system. Furthermore, according to Lyapunov stability theory, it is proven that all signals are uniform ultimate boundedness in the closed loop system and the voltage recovery synchronization error converges to an arbitrarily small neighborhood of the origin near. Finally, some simulation results in MATLAB illustrate the validity of the proposed control strategy.A DNA motif is a sequence pattern shared by the DNA sequence segments that bind to a specific protein. Discovering motifs in a given DNA sequence dataset plays a vital role in studying gene expression regulation. As an important attribute of the DNA motif, the motif length directly affects the quality of the discovered motifs. How to determine the motif length more accurately remains a difficult challenge to be solved. We propose a new motif length prediction scheme named MotifLen by using supervised machine learning. First, a method of constructing sample data for predicting the motif length is proposed. Secondly, a deep learning model for motif length prediction is constructed based on the convolutional neural network. Then, the methods of applying the proposed prediction model based on a motif found by an existing motif discovery algorithm are given. The experimental results show that i) the prediction accuracy of MotifLen is more than 90% on the validation set and is significantly higher than that of the compared methods on real datasets, ii) MotifLen can successfully optimize the motifs found by the existing motif discovery algorithms, and iii) it can effectively improve the time performance of some existing motif discovery algorithms.In this work, we proposed a new out-of-place resetting strategy that guides users to optimal physical locations with the most potential for free movement and a smaller amount of resetting required for their further movements. For this purpose, we calculate a heat map of the walking area according to the average walking distance using a simulation of the used RDW algorithm. Based on this heat map we identify the most suitable position for a one-step reset within a predefined searching range and use the one as the reset point. The results show that our method increases the average moving distance within one cycle of resetting. Furthermore, our resetting method can be applied to any physical area with obstacles. That means that RDW methods that were not suitable for such environments (e.g. Steer to Center) combined with our resetting can also be extended to such complex walking areas. In addition, we also present a resetting user interface to instruct users to move the nearby point, by using light spots to bring user a sense of relative displacement while the virtual scenario is still.The explanation for deep neural networks has drawn extensive attention in the deep learning community over the past few years. In this work, we study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks. Compared to iteration based saliency methods, single backward pass based saliency methods benefit from faster speed, and they are widely used in downstream visual tasks. Thus, we focus on single backward pass based methods. However, existing methods in this category struggle to successfully produce fine-grained saliency maps concentrating on specific target classes. That said, producing faithful saliency maps satisfying both target-selectiveness and fine-grainedness using a single backward pass is a challenging problem in the field. To mitigate this problem, we revisit the gradient flow inside the network, and find that the entangled semantics and original weights may disturb the propagation of target-relevant saliency. Inspired by those observations, we propose a novel visual saliency method, termed Target-Selective Gradient Backprop (TSGB), which leverages rectification operations to effectively emphasize target classes and further efficiently propagate the saliency to the image space, thereby generating target-selective and fine-grained saliency maps. The proposed TSGB consists of two components, namely, TSGB-Conv and TSGB-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively. Extensive qualitative and quantitative experiments on the ImageNet and Pascal VOC datasets show that the proposed method achieves more accurate and reliable results than the other competitive methods. Code is available at https//github.com/123fxdx/CNNvisualizationTSGB.In this paper, we present a novel end-to-end pose transfer framework to transform a source person image to an arbitrary pose with controllable attributes. Due to the spatial misalignment caused by occlusions and multi-viewpoints, maintaining high-quality shape and texture appearance is still a challenging problem for pose-guided person image synthesis. Without considering the deformation of shape and texture, existing solutions on controllable pose transfer still cannot generate high-fidelity texture for the target image. To solve this problem, we design a new image reconstruction decoder - ShaTure which formulates shape and texture in a braiding manner. It can interchange discriminative features in both feature-level space and pixel-level space so that the shape and texture can be mutually fine-tuned. In addition, we develop a new bottleneck module - Adaptive Style Selector (AdaSS) Module which can enhance the multi-scale feature extraction capability by self-recalibration of the feature map through channel-wise attention.
Homepage: https://www.selleckchem.com/products/eft-508.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.