Notes
![]() ![]() Notes - notes.io |
Results From 83 samples of osteosarcoma obtained from the Target dataset, 137 DEGs were identified, including 134 upregulated genes and three downregulated genes. Functional enrichment analysis and PPI networks demonstrated that these genes were mainly involved in neutrophil degranulation and neutrophil activation involved in immune response, and participated in neuroactive ligand-receptor interaction and staphylococcus aureus infection. Conclusions Our study established an immune-related gene signature to predict outcomes of osteosarcoma, which may be important targets for individual treatment. © The Author(s) 2020.Background Tongue squamous cell carcinoma (TSCC) is the most common oral malignancy. Previous studies found that microRNA (miR)-26a and miR-26b were downregulated in TSCC tissues. The current study was designed to explore the effects of miR-26a/miR-26b on TSCC progression and the potential mechanism. Methods Expression of miR-26a, miR-26b and p21 Activated Kinase 1 (PAK1) in TSCC tissues and cell lines was detected by reverse transcription- quantitative polymerase chain reaction (RT-qPCR). Flow cytometry analysis was performed to examine cell cycle and apoptosis. Transwell assay was conducted to evaluate the migrated and invasive abilities of SCC4 and Cal27 cells. In addition, western blot assay was employed to analyze the protein level. Glucose assay kit and lactate assay kit were utilized to analyze glycolysis. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were applied to explore the relationship between miR-26a/miR-26b and PAK1. Xenograft tumor model was constructed to explore the role of miR-26a/miR-26b in vivo. Results Both miR-26a and miR-26b were underexpressed, while PAK1 was highly enriched in TSCC. Overexpression of miR-26a and miR-26b inhibited TSCC cell cycle, migration invasion and glycolysis, while promoted cell apoptosis. Both miR-26a and miR-26b directly targeted and negatively regulated PAK1 expression. Introduction of PAK1 partially reversed miR-26a/miR-26b upregulation-mediated cellular behaviors in TSCC cells. Gain of miR-26a/miR-26b blocked TSCC tumor growth in vivo. Conclusion MiR-26a/miR-26b repressed TSCC progression via targeting PAK1 in vitro and in vivo, which enriched our understanding about TSCC development and provided new insights into the its treatment. © The Author(s) 2020.Background Recently, many emerging circular RNAs (circRNAs) have been studied in human malignancies, including gastric cancer (GC). Researches concerning cancers have revealed that aberrant expression of circRNAs play a big part in tumorigenesis and development of diverse malignant tumors. Although hsa_circ_0014130 (circPIP5K1A) has been confirmed to be closely related to non-small cell lung cancer (NSCLC) progression, the knowledge of its function on GC progression remains unclear. Therefore, it is of great interest to uncover the underlying role of circPIP5K1A in GC. Methods The expression and characteristic of circPIP5K1A were separately analyzed by RT-qPCR, nucleic acid electrophoresis, RNase R and Actinomycin D treatment. CCK-8, colony formation, EdU, transwell, TUNEL, flow cytometry, luciferase reporter, RIP and RNA pull-down assays were employed to testify the regulatory role of circPIP5K1A in GC. Results In current study, circPIP5K1A, featured with closed-loop structure, was proved to be highly expressed in tissues and cells of GC. Loss-of-function assays depicted that silencing circPIP5K1A suppressed GC development. Follow-up mechanism tests unveiled that circPIP5K1A bound with miR-376c-3p and inhibition of miR-376c-3p reversed circPIP5K1A downregulation-mediated effect on GC progression. Additionally, ZNF146 was verified to be the downstream molecule of circPIP5K1A/miR-376c-3p axis in modulating GC progression. Conclusions circPIP5K1A stimulates GC progression by sponging miR-376c-3p to upregulate ZNF146 expression. © The Author(s) 2020.Background Numerous circular RNAs (circRNAs) have been recognized as vital modulators of human malignancies, including glioma. Whereas, the functional role of circRNA Pituitary Homeo Box 1 (circPITX1) in the radioresistance of glioma cells remains largely uncertain. Methods Quantitative real-time PCR (qRT-PCR) or western blot analysis was employed to examine the expression of circPITX1, microRNA (miR)-329-3p and NIMA-related kinase 2 (NEK2). 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay was used to determine cell viability. Glycolysis was assessed by commercial kits and western blot analysis. Colony formation assay was conducted to analyze cell survival and clonogenicity capacity. The relationship among circPITX1, miR-329-3p and NEK2 was confirmed via dual-luciferase reporter assay. The in vivo function of circPITX1 was evaluated by tumor xenograft assay. Results Expression of circPITX1 and NEK2 was up-regulated in glioma tissues and cells, while miR-329-3p exhibited reverse trend. CircPITX1 knockdown repressed viability, glycolysis and colony formation, but promoted radiosensitivity of glioma cells, as well as inhibited tumor growth in vivo. MiR-329-3p was a target miRNA of circPITX1 and miR-329-3p deficiency reversed knockdown of circPITX1-mediated glycolysis inhibition and radioresistance reduction. MiR-329-3p exerted inhibitory effects on glycolysis and radioresistance of glioma cells by targeting NEK2. CircPITX1 facilitated NEK2 expression by sponging miR-329-3p. Glycolytic inhibitor 2-deoxy-d-glucose (2-DG) disposition weakened the promoted impact on glycolysis caused by circPITX1. Conclusion CircPITX1 knockdown reduced glycolysis to contribute to radiosensitivity in glioma through miR-329-3p/NEK2 axis, providing a possible mechanism of circPITX1 in the development of glioma. © The Author(s) 2020.Background Astrocyte-elevated gene-1 (AEG-1) is over-expressed in many cancer cells and has multiple key functions in tumor initiation and progression. Currently, targeted-AEG-1 siRNA is one of the most common techniques to down-regulate AEG-1 expression, but the lack of tumor specificity and available delivery system make it difficult to enter clinical trials. Methods In this study, we creatively developed an adenovirus-mediated anti-AEG-1 single-chain antibody fragment (ScFv) expression system driven by a tumor specific promoter, and experimented with it in human cervical carcinoma cells to investigate the effect on tumor's proliferation and apoptosis. Results The results showed that of HeLa and SiHa cells treated with this recombinant anti-AEG-1 ScFv adenovirus not only inhibited cell growth, but induced apoptosis both in vitro and in vivo. Furthermore, we also observed that the expressions of several apoptosis-related genes like Akt 1 and c-Myc decreased, while NF-κB (p65) and cleaved caspase 3 increased on protein levels in vivo. Conclusion We concluded that stathmin promoter-driving anti-AEG-1 ScFv adenoviral system may be a breakthrough for its dual-specificity, and serve as an adjuvant tumor specific therapy method in the treatment for human cervical cancers. © The Author(s) 2020.Background Non-small-cell lung cancer (NSCLC) is one of the common cancers in the world. Circular RNA 0072083 (circ_0072083, circZFR) has been reported to be associated with the progression of NSCLC. In this study, we intended to explore the role and the potential mechanism of circ_0072083 in NSCLC. Methods Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of circ_0072083, its matching linear RNA (zinc finger RNA binding protein (ZFR)) and microRNA-545-3p (miR-545-3p) in NSCLC cells. The ability of colony formation in NSCLC cells was detected by colony formation assay. The apoptosis and cell cycle were measured by flow cytometry. The metastasis was determined by transwell migration and invasion assays. The protein expression of E-cadherin, N-cadherin, Vimentin and Cbl proto-oncogene like 1 (CBLL1) was examined by western blot assay. The interaction between miR-545-3p and circ_0072083 or CBLL1 was predicted by starBase or Targetscan software. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate these interactions. Trichostatin A molecular weight Nude mice bearing tumors were used to confirm the role of circ_0072083 and cisplatin (DDP) in vivo. Results The level of circ_0072083 was higher in NSCLC tissues and cells relative to that in adjacent non-tumor tissues and normal lung cells. The transfection of si-circ_0072083 inhibited colony formation, cell cycle and metastasis while promoted the apoptosis of NSCLC cells stimulated by DDP. MiR-545-3p was a direct functional target of circ_0072083 in NSCLC cells. CBLL1 could bind to miR-545-3p in NSCLC cells. Circ_0072083 promoted the progression of NSCLC induced by DDP through sponging miR-545-3p and enhancing the enrichment of CBLL1 in vivo and in vitro. Conclusion Circ_0072083 depletion contributed to DDP-triggered inhibition of NSCLC tumor through miR-545-3p/CBLL1 axis. © The Author(s) 2020.Background This study aimed to comprehensively assess the diagnostic value of fibrinogen to prealbumin ratio (FPR) and gamma-glutamyl transpeptidase to platelet ratio (GPR) as single markers or in combination in patients with alpha-fetoprotein-negative (AFP-negative) hepatocellular carcinoma (HCC). Methods A total of 199 healthy controls and 515 AFP-negative patients were enrolled in this study, including 180 HCC inpatients, 151 liver cirrhosis (LC) patients, and 184 chronic hepatitis (CH) cases. Mann-Whitney U or Kruskal-Wallis H test were used to analyze differences between groups in laboratory parameters and clinicopathological features. The diagnostic value of FPR and GPR, alone or in combination, in AFP-negative HCC (AFP-NHCC) patients was determined via a receiver operating characteristic (ROC) curve. Results The levels of FPR and GPR were gradually increased in the development of AFP-NHCC and positively correlated with the tumor size and Barcelona Clinic Liver Cancer (BCLC) stages. Moreover, GPR was associated with Edmondson-Steiner grades. After univariate logistic regression analysis, FPR and GPR remained independent predictors of adverse outcomes. The combination of FPR and GPR had a good ability to detect AFP-NHCC from the control group (area under curve [AUC] = 0.977), AFP-negative CH (AUC = 0.745), and AFP-negative LC (AUC = 0.666). FPR combined with GPR possessed a larger area (0.943, 0.971) and sensitivity (87.50%, 89.81%) than FPR or GPR alone for differentiating AFP-NHCC with tumor size less then 3 cm or at the BCLC-A stage. Conclusions The pretreatment levels of FPR and GPR played vital roles in the development of AFP-NHCC, especially in patients with early or small AFP-NHCC. © The Author(s) 2020.Background Gastric cancer (GC) is a common cause of cancer-related mortality worldwide, and microRNAs (miRNAs) have been shown to play an important role in GC development. This study aims to explore the effect of microRNA-93-5p (miR-93-5p) on the epithelial-mesenchymal transition (EMT) in GC, via AHNAK and the Wnt signaling pathway. Methods Microarray-based gene expression analysis was performed to identify GC-related differentially expressed miRNAs and genes. Then the expression of the miR-93-5p was examined in GC tissues and GC cell lines. The targeting relationship between miR-93-5p and AHNAK was verified by a dual luciferase reporter gene assay. In an attempt to ascertain the contributory role of miR-93-5p in GC, miR-93-5p mimic or inhibitor, as well as an AHNAK overexpression vector, were introduced to HGC-27 cells. HGC-27 cell migration and invasive ability, and EMT were assayed using Transwell assay and western blot analysis. Regulation of the Wnt signaling pathway was also assessed using TOP/FOP flash luciferase assay.
Read More: https://www.selleckchem.com/products/Trichostatin-A.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team