NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Strong Consistency Mapping Employing RGB-D Camcorders.
[This retracts the article DOI 10.1016/j.pmedr.2018.04.002.]. © 2020 Published by Elsevier Inc.Rapid energy-efficient movements are one of nature's greatest developments. Mechanisms like snap-buckling allow plants like the Venus flytrap to close the terminal lobes of their leaves at barely perceptible speed. Here, a soft balloon actuator is presented, which is inspired by such mechanical instabilities and creates safe, giant, and fast deformations. The basic design comprises two inflated elastomer membranes pneumatically coupled by a pressurized chamber of suitable volume. The high-speed actuation of a rubber balloon in a state close to the verge of mechanical instability is remotely triggered by a voltage-controlled dielectric elastomer membrane. This method spatially separates electrically active and passive parts, and thereby averts electrical breakdown resulting from the drastic thinning of an electroactive membrane during large expansion. Bistable operation with small and large volumes of the rubber balloon is demonstrated, achieving large volume changes of 1398% and a high-speed area change rate of 2600 cm2 s-1. The presented combination of fast response time with large deformation and safe handling are central aspects for a new generation of soft bio-inspired robots and can help pave the way for applications ranging from haptic displays to soft grippers and high-speed sorting machines. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Improving the quality of perovskite poly-crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron-rich carbonyl group (C=O) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) less then 30%) without any encapsulation. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Glioma initiating cells (GICs) function as the seed for the propagation and relapse of glioma. Designing a smart and efficient strategy to target the GICs and to suppress the multiple signaling pathways associated with stemness and chemoresistance is essential to achieving a cancer cure. Inspired by the metabolic difference in endocytosis between GICs, differentiated glioma cells, and normal cells, a tailored lipoprotein-like nanostructure is developed to amplify their internalization into GICs through receptor-stimulated macropinocytosis. selleck screening library As CXCR4 is highly expressed on GICs and glioma tumor sites, meanwhile, the activation of CXCR4 induces the receptor-stimulated macropinocytosis pathway in GICs, this CXCR4 receptor-stimulated lipoprotein-like nanoparticle (SLNP) achieves efficient accumulation in GICs in vitro and in vivo. By carrying microRNA-34a in the core, this tailored SLNP reduces sex-determining region Y-box 2 and Notch1 expression, powerfully inhibits GICs stemness and chemoresistance, and significantly prolongs the survival of GICs-bearing mice. Taken together, a tailored lipoprotein-based nanostructure realizes efficient GICs accumulation and therapeutic effect through receptor-stimulated macropinocytosis, providing a powerful nanoplatform for RNA interference drugs to combat glioma. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Diverse reproduction modes of bio-organisms open new intriguing opportunities for biochemistry-enabled materials. Herein, a new strategy is developed to explore biodirected structures for functional materials via controlling the reproduction mode. Yeast with sexual or asexual reproduction mode are employed in this work. They result in two different biodirected structures, from bowl-like hollow hemisphere to "bubble-in-sphere" (BIS) structure, for the VN x O y /C composites. Benefitting from the hierarchical structure, nanoscale particles and conductive biomass-derived carbon base, both VN x O y /C biocomposites achieve high power/energy density, good reliability, and excellent long-term cycling stability in aqueous Zn-ion batteries. Deep investigations further reveal that different biodirected structures greatly influence the electrochemical properties of biocomposites. The bowl-like structures with thin shells and folded double layers achieve larger surface area and more active sites, which ensure their faster kinetics and better high rate capability. The BIS structures with a more compact assembly and higher stack capability are favorable to the better energy storage. Therefore, this work not only introduces a new clue to boost biodirected structures for functional materials, but also propels the development of Zn-ion batteries in diverse applications. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm-2. In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.
Homepage: https://www.selleckchem.com/Proteasome.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.