Notes
![]() ![]() Notes - notes.io |
The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.Glioblastoma (GBM) is the most common primary and aggressive tumour in brain cancer. Novel therapies, despite achievements in chemotherapy, radiation and surgical techniques, are needed to improve the treatment of GBM tumours and extend patients' survival. MeclofenamateSodium Gene delivery therapy mostly uses the viral vector, which causes serious adverse events in gene therapy. Graphene-based complexes can reduce the potential side effect of viral carries, with high efficiency of microRNA (miRNA) or antisense miRNA delivery to GBM cells. The objective of this study was to use graphene-based complexes to induce deregulation of miRNA level in GBM cancer cells and to regulate the selected gene expression involved in apoptosis. The complexes were characterised by Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy and zeta potential. The efficiency of miRNA delivery to the cancer cells was analysed by flow cytometry. The effect of the anticancer activity of graphene-based complexes functionalised by the miRNA sequence was analysed using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) assays at the gene expression level. The results partly explain the mechanisms of miRNA deregulation stress, which is affected by graphene-based complexes together with the forced transport of mimic miR-124, miR-137 and antisense miR-21, -221 and -222 as an anticancer supportive therapy.In this study, we present the isolation and characterization of the structure of six gallotannins (1-6), three ellagitannins (7-9), a neolignan glucoside (10), and three related polyphenolic compounds (gallic acid, 11 and 12) from Trapa bispinosa Roxb. pericarp extract (TBE). link2 Among the isolates, the structure of compound 10 possessing a previously unclear absolute configuration was unambiguously determined through nuclear magnetic resonance and circular dichroism analyses. The α-glucosidase activity and glycation inhibitory effects of the isolates were evaluated. Decarboxylated rugosin A (8) showed an α-glucosidase inhibitory activity, while hydrolyzable tannins revealed stronger antiglycation activity than that of the positive control. Furthermore, the identification and quantification of the TBE polyphenols were investigated by high-performance liquid chromatography coupled to ultraviolet detection and electrospray ionization mass spectrometry analysis, indicating the predominance of gallic acid, ellagic acid, and galloyl glucoses showing marked antiglycation properties. These findings suggest that there is a potential food industry application of polyphenols in TBE as a functional food with antidiabetic and antiglycation activities.The fractionation of the methanolic extract (MeOH-E) of Retama raetam (Forssk.) Webb & Berthel and further analysis by thin layer chromatography resulted in four fractions (F1, F2, F3 and F4) that, in parallel with the MeOH-E, were screened for antioxidant, cytotoxic, antidiabetic and antibacterial properties. In addition, chemical characterization of their bioactive molecules was performed using LC-DAD-ESI/MSn. The results indicated that F3 was the most promising regarding antioxidant and cytotoxicity abilities, possibly due to its richness in flavonoids class, particularly isoflavones. In turn, F1 was characterized by the presence of the most polar compounds from MeOH-E (organic acids and piscidic acid) and showed promising abilities to inhibit α-amylase, while F4, which contained prenylated flavonoids and furanoflavonoids, was the most active against the tested bacteria. The gathered results emphasize the distinct biological potentials of purified fractions of Retama raetam.The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.(-)-Epigallocatechin gallate (EGCG), the chief dietary constituent in green tea (Camellia sinensis), is relatively unstable under oxidative conditions. This study evaluated the use of non-thermal dielectric barrier discharge (DBD) plasma to improve the anti-digestive enzyme capacities of EGCG oxidation products. Pure EGCG was dissolved in an aqueous solution and irradiated with DBD plasma for 20, 40, and 60 min. The reactant, irradiated for 60 min, exhibited improved inhibitory properties against α-glucosidase and α-amylase compared with the parent EGCG. The chemical structures of these oxidation products 1-3 from the EGCG, irradiated with the plasma for 60 min, were characterized using spectroscopic methods. Among the oxidation products, EGCG quinone dimer A (1) showed the most potent inhibitory effects toward α-glucosidase and α-amylase with IC50 values of 15.9 ± 0.3 and 18.7 ± 0.3 μM, respectively. These values were significantly higher than that of the positive control, acarbose. Compound 1, which was the most active, was the most abundant in the plasma-irradiated reactant for 60 min according to quantitative high-performance liquid chromatography analysis. These results suggest that the increased biological capacity of EGCG can be attributed to the structural changes to EGCG in H2O, induced by cold plasma irradiation.Methylphenidate is a powerful central nervous system stimulant with a high potential for abuse in horse racing. The detection of methylphenidate use is of interest to horse racing authorities for both prior to and during competition. The use of hair as an alternative sampling matrix for equine anti-doping has increased as the number of detectable compounds has expanded. Our laboratory developed a liquid chromatography-high-resolution mass spectrometry method to detect the presence of methylphenidate in submitted samples. Briefly, hair was decontaminated, cut, and pulverized prior to liquid-liquid extraction in basic conditions before introduction to the LC-MS system. Instrumental analysis was conducted using a Thermo Q Exactive mass spectrometer using parallel reaction monitoring using a stepped collision energy to obtain sufficient product ions for qualitative identification. The method was validated and limits of quantitation, linearity, matrix effects, recovery, accuracy, and precision were determined. The method has been applied to confirm the presence of methylphenidate in official samples submitted by racing authorities.
A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC-SAW) was developed for rapid determination of the pharmacological volatiles of turmeric (
L.).
The volatile compounds in 20 turmeric samples, collected from different parts and different origins, were assessed by the fast GC-SAW. In addition, gas chromatography-mass spectrometry (GC-MS) was employed to confirm the chemical composition of the main volatiles. The digital fingerprint of turmeric was established and analysed by principal component analysis and cluster analysis.
Curcumene (9.1%), β-sesquiphellandrene (5.1%) and ar-turmerone (69.63%) were confirmed as the main pharmacological volatiles of turmeric. The content of ar-turmerone in lateral rhizome turmeric was significantly higher than that of top rhizome and ungrouped turmeric. The contents of curcumene and β-sesquiphellandrene in top rhizome turmeric were higher than those in lateral and ungrouped turmeric. The 20 turmeric samples were divided into four categories, which reflected the quality characteristics of the turmeric from different parts and origins.
The GC-SAW method can rapidly and accurately detect pharmacologically volatiles of turmeric, and it can be used in the quality control of turmeric.
The GC-SAW method can rapidly and accurately detect pharmacologically volatiles of turmeric, and it can be used in the quality control of turmeric.Salt concentrations in brine and temperature are the major environmental factors that affect activity of microorganisms and, thus may affect formation of biogenic amines (BAs) during the fermentation process. A model system to ferment cucumbers with low salt (0.5%, 1.5% or 5.0% NaCl) at two temperatures (11 or 23 °C) was used to study the ability of indigenous microbiota to produce biogenic amines and metabolize amino acid precursors. Colony counts for presumptive Enterococcus and Enterobacteriaceae increased by 4 and up to 2 log of CFU∙mL-1, respectively, and remained viable for more than 10 days. 16S rRNA sequencing showed that Lactobacillus and Enterobacter were dominant in fermented cucumbers with 0.5% and 1.5% salt concentrations after storage. The initial content of BAs in raw material of 25.44 ± 4.03 mg∙kg-1 fluctuated throughout experiment, but after 6 months there were no significant differences between tested variants. The most abundant BA was putrescine, that reached a maximum concentration of 158.02 ± 25.11 mg∙kg-1. The Biogenic Amines Index (BAI) calculated for all samples was significantly below that needed to induce undesirable effects upon consumption. The highest value was calculated for the 23 °C/5.0% NaCl brine variant after 192 h of fermentation (223.93 ± 54.40). link3 Results presented in this work indicate that possibilities to control spontaneous fermentation by changing salt concentration and temperature to inhibit the formation of BAs are very limited.The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022.
Here's my website: https://www.selleckchem.com/products/meclofenamate-sodium.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team