NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Branched-Chain Amino Acid Catabolism as well as Cardiopulmonary Perform Subsequent Intense Maximum Exercise Tests within Teens.
Empirical models, fitted to data from observations, are often used in natural sciences to describe physical behaviour and support discoveries. However, with more complex models, the regression of parameters quickly becomes insufficient, requiring a visual parameter space analysis to understand and optimize the models. In this work, we present a design study for building a model describing atmospheric convection. compound 3k We present a mixed-initiative approach to visually guided modelling, integrating an interactive visual parameter space analysis with partial automatic parameter optimization. Our approach includes a new, semi-automatic technique called IsoTrotting, where we optimize the procedure by navigating along isocontours of the model. We evaluate the model with unique observational data of atmospheric convection based on flight trajectories of paragliders.Animated transitions help viewers follow changes between related visualizations. Specifying effective animations demands significant effort authors must select the elements and properties to animate, provide transition parameters, and coordinate the timing of stages. To facilitate this process, we present Gemini, a declarative grammar and recommendation system for animated transitions between single-view statistical graphics. Gemini specifications define transition "steps" in terms of high-level visual components (marks, axes, legends) and composition rules to synchronize and concatenate steps. With this grammar, Gemini can recommend animation designs to augment and accelerate designers' work. Gemini enumerates staged animation designs for given start and end states, and ranks those designs using a cost function informed by prior perceptual studies. To evaluate Gemini, we conduct both a formative study on Mechanical Turk to assess and tune our ranking function, and a summative study in which 8 experienced visualization developers implement animations in D3 that we then compare to Gemini's suggestions. We find that most designs (9/11) are exactly replicable in Gemini, with many (8/11) achievable via edits to suggestions, and that Gemini suggestions avoid multiple participant errors.Traffic light detection is crucial for environment perception and decision-making in autonomous driving. State-of-the-art detectors are built upon deep Convolutional Neural Networks (CNNs) and have exhibited promising performance. However, one looming concern with CNN based detectors is how to thoroughly evaluate the performance of accuracy and robustness before they can be deployed to autonomous vehicles. In this work, we propose a visual analytics system, VATLD, equipped with a disentangled representation learning and semantic adversarial learning, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications. The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization, and the semantic adversarial learning efficiently exposes interpretable robustness risks and enables minimal human interaction for actionable insights. We also demonstrate the effectiveness of various performance improvement strategies derived from actionable insights with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.Domain adaptation has been a fundamental technology for transferring knowledge from a source domain to a target domain. The key issue of domain adaptation is how to reduce the distribution discrepancy between two domains in a proper way such that they can be treated indifferently for learning. In this paper, we propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain. Specifically, we regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching. Besides, to exploit the manifold structure information of target data more thoroughly, we further introduce a local manifold self-learning strategy into our proposal to adaptively capture the inherent local connectivity of target samples. An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee. In addition to unsupervised domain adaptation, we further extend our method to the semi-supervised scenario including both homogeneous and heterogeneous settings in a direct but elegant way. Extensive experiments on seven benchmark datasets validate the significant superiority of our proposal in both unsupervised and semi-supervised manners.When imaging through a semi-reflective medium such as glass, the reflection of another scene can often be found in the captured images. It degrades the quality of the images and affects their subsequent analyses. In this paper, a novel deep neural network approach for solving the reflection problem in imaging is presented. Traditional reflection removal methods not only require long computation time for solving different optimization functions, their performance is also not guaranteed. As array cameras are readily available in nowadays imaging devices, we first suggest in this paper a multiple-image based depth estimation method using a convolutional neural network (CNN). The proposed network avoids the depth ambiguity problem due to the reflection in the image, and directly estimates the depths along the image edges. They are then used to classify the edges as belonging to the background or reflection. Since edges having similar depth values are error prone in the classification, they are removed from the reflection removal process. We suggest a generative adversarial network (GAN) to regenerate the removed background edges. Finally, the estimated background edge map is fed to another auto-encoder network to assist the extraction of the background from the original image. Experimental results show that the proposed reflection removal algorithm achieves superior performance both quantitatively and qualitatively as compared to the state-of-the-art methods. The proposed algorithm also shows much faster speed compared to the existing approaches using the traditional optimization methods.Pose guided synthesis aims to generate a new image in an arbitrary target pose while preserving the appearance details from the source image. link2 Existing approaches rely on either hard-coded spatial transformations or 3D body modeling. They often overlook complex non-rigid pose deformation or unmatched occluded regions, thus fail to effectively preserve appearance information. In this article, we propose a pose flow learning scheme that learns to transfer the appearance details from the source image without resorting to annotated correspondences. Based on such learned pose flow, we proposed GarmentNet and SynthesisNet, both of which use multi-scale feature-domain alignment for coarse-to-fine synthesis. Experiments on the DeepFashion, MVC dataset and additional real-world datasets demonstrate that our approach compares favorably with the state-of-the-art methods and generalizes to unseen poses and clothing styles.Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this article, we provide a comprehensive survey of this new and continuously growing field of research, summarize the commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we conjecture what the future may hold for deep learning-based stereo for depth estimation research.Learning to re-identify a group of people across camera systems has important applications in video surveillance. However, most existing methods focus on person re-identification (re-id), ignoring the fact that people often walk in groups. In this work, we consider employing context information for group re-id. On the one hand, group re-id is more challenging than single person re-id, since it requires both a robust modeling of individual person and full awareness of global group structures. On the other hand, person re-id can be greatly enhanced by incorporating visual context, a task which we formulate as group-aware person re-id. In this paper, we propose a novel unified framework to simultaneously address the above tasks, i.e., group re-id and group-aware person re-id. link3 Specifically, we construct a context graph to exploit dependencies among different people. A multi-level attention mechanism is developed to formulate both intra- and inter-group context, with an additional self-attention module for robust graph-level representations. Meanwhile, to facilitate the deployment of deep learning models on these tasks, we build a new group re-id dataset containing 3.8K images with 1.5K annotated groups. Extensive experiments on the novel dataset as well as three existing datasets clearly demonstrate the effectiveness of the proposed framework.Super-resolution is a fundamental problem in computer vision which aims to overcome the spatial limitation of camera sensors. While significant progress has been made in single image super-resolution, most algorithms only perform well on synthetic data, which limits their applications in real scenarios. In this paper, we study the problem of real-scene single image super-resolution to bridge the gap between synthetic data and real captured images. We focus on two issues of existing super-resolution algorithms lack of realistic training data and insufficient utilization of visual information obtained from cameras. To address the first issue, we propose a method to generate more realistic training data by mimicking the imaging process of digital cameras. For the second issue, we develop a two-branch convolutional neural network to exploit the radiance information originally-recorded in raw images. In addition, we propose a dense channel-attention block for better image restoration as well as a learning-based guided filter network for effective color correction. Our model is able to generalize to different cameras without deliberately training on images from specific camera types. Extensive experiments demonstrate that the proposed algorithm can recover fine details and clear structures, and achieve high-quality results for single image super-resolution in real scenes.
Website: https://www.selleckchem.com/products/pkm2-inhibitor-compound-3k.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.