Notes
Notes - notes.io |
First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries.Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Selleck Puromycin aminonucleoside Previous studies have found that PWM systems may deliver incorrect flow rates. The objective of the present study was to characterize the performance of a commercial blast sprayer modified with pulse-width-modulated nozzles under laboratory conditions, as a preliminary step before its further field validation. Four different duty cycles (25 percent, 50 percent, 75 percent and 100 percent) and four different pressures (400 kPa, 500 kPa, 600 kPa and 700 kPa) were combined to experimentally measure the flow rate of each nozzle. Results showed that the PWM nozzles mounted in the commercial blast sprayer, under static conditions, were capable of modulating flow rate according to the duty cycle. However, the reduction of flow rates for the tested duty cycles according to pressure was lower than the percentage expected. A good linear relation was found between the pressure registered by the control system feedback sensor and the pressure measured by a reference conventional manometer located after the pump. High-speed video recordings confirmed the accurate opening and closing of the nozzles according to the duty cycle; however, substantial pressure variations were found at nozzle level. Further research to establish the general suitability of PWM systems for regulating nozzle flow rates in blast sprayers without modifying the system pressure still remains to be addressed.Surface spectral reflectance is useful for color reproduction. In this study, the reconstruction of spectral reflectance using a conventional camera was investigated. The spectrum reconstruction error could be reduced by interpolating camera RGB signals, in contrast to methods based on basis spectra, such as principal component analysis (PCA). The disadvantage of the interpolation method is that it cannot interpolate samples outside the convex hull of reference samples in the RGB signal space. An interpolation method utilizing auxiliary reference samples (ARSs) to extrapolate the outside samples is proposed in this paper. The ARSs were created using reference samples and color filters. The convex hull of the reference samples and ARSs was expanded to enclose outside samples for extrapolation. A commercially available camera was taken as an example. The results show that with the proposed method, the extrapolation error was smaller than that of the computationally time-consuming weighted PCA method. A low cost and fast detection speed for spectral reflectance recovery can be achieved using a conventional camera.In this paper, we present an overview of the latest achievements in surface acoustic wave (SAW) sensors for gas or liquid fluid, with a focus on the electrodes' topology and signal processing, as related to the application of the sensing device. Although the progress in this field is mainly due to advances in the materials science and the sensing coatings, the interdigital (IDT) electrodes' organization is also an important tool for setting the acoustic-wave-distribution mode, and, thus, for improvement of the SAW performance. The signal-conditioning system is of practical interest, as the implementation of the SAW, as a compact and mobile system is dependent on this electronic circuit. The precision of the detection of the SAW platform is related not only to the IDT electrodes' geometry but also to their location around the sensing layer. The most commonly used architectures are shown in the present paper. Finally, we identify the needs for the future improvement of these prospective sensors.This paper proposes a duty-cycle electronically tunable triangular/square wave generator using LT1228 commercially available ICs for capacitive sensor interfacing. The generator comprises two LT1228s, a grounded resistor, and a grounded capacitor. The circuit provides two output signals which are triangular and square waves. Both signals are regulated by adjusting the current bias. Likewise, the amplitude of the triangular signal can be tuned electronically without affecting the frequency. In addition, the square wave can independently control the linear duty cycle via tuning the voltage. Experiment results confirm the performance of the proposed circuit that the amplitude of the triangular wave, frequency, and duty cycle are linearly controllable via current or voltage, which do not affect each other. The duty cycle, the amplitude of the triangular wave, and frequency have maximum errors of ±1.60%, ±3.33%, and ±2.55%, respectively.The ultimate goal of this research study is to perform continuous rather than sequential movements of prismatic joints for effective motion of a snake robot with prismatic joints in a complex terrain. We present herein a control method for robotic step climbing. This method is composed of two parts the first involves the shift reference generator that generates the joint motion for climbing a step, and the other is use of the trajectory tracking controller, which generates the joint motion for the head to track the target trajectory. In this method, prismatic joints are divided into those that are directly controlled for climbing a step and those that are represented as redundancies. By directly controlling the link length, it is possible to prevent the trailing part from back motion when climbing a step, and to avoid a singular configuration in the parts represented as redundancies. A snake robot that has rotational and prismatic joints and can move in three-dimensions was developed, and the effectiveness of the proposed method was demonstrated by experiments using this robot. In the experiment, it was confirmed that the proposed method realizes the step climbing, and the link length limitation using the sigmoid function works effectively.This is a review focused on advances and current limitations of computer vision (CV) and how CV can help us obtain to more autonomous actions in surgery. It is a follow-up article to one that we previously published in Sensors entitled, "Artificial Intelligence Surgery How Do We Get to Autonomous Actions in Surgery?" As opposed to that article that also discussed issues of machine learning, deep learning and natural language processing, this review will delve deeper into the field of CV. Additionally, non-visual forms of data that can aid computerized robots in the performance of more autonomous actions, such as instrument priors and audio haptics, will also be highlighted. Furthermore, the current existential crisis for surgeons, endoscopists and interventional radiologists regarding more autonomy during procedures will be discussed. In summary, this paper will discuss how to harness the power of CV to keep doctors who do interventions in the loop.This work analyzed the use of Microsoft HoloLens 2 in orthopedic oncological surgeries and compares it to its predecessor (Microsoft HoloLens 1). Specifically, we developed two equivalent applications, one for each device, and evaluated the augmented reality (AR) projection accuracy in an experimental scenario using phantoms based on two patients. We achieved automatic registration between virtual and real worlds using patient-specific surgical guides on each phantom. They contained a small adaptor for a 3D-printed AR marker, the characteristic patterns of which were easily recognized using both Microsoft HoloLens devices. The newest model improved the AR projection accuracy by almost 25%, and both of them yielded an RMSE below 3 mm. After ascertaining the enhancement of the second model in this aspect, we went a step further with Microsoft HoloLens 2 and tested it during the surgical intervention of one of the patients. During this experience, we collected the surgeons' feedback in terms of comfortability, usability, and ergonomics. Our goal was to estimate whether the improved technical features of the newest model facilitate its implementation in actual surgical scenarios. All of the results point to Microsoft HoloLens 2 being better in all the aspects affecting surgical interventions and support its use in future experiences.Parallel redundancy protocol (PRP) and high-availability redundancy protocol (HSR) are widely adopted protocols based on IEC 61850 standard to support zero recovery communication networks for time-critical and reliable interactions in power system substations. However, hiring these protocols comes with technical and economic constraints that impact the size of the substation network arrangement. Therefore, we will undertake a theoretical analysis of HSR, PRP, and their combinations to reach a maximum number of nodes in different substation communication architectures regarding IEC 61850 standard message time constraint requirements and IEC 62439-3 standard regulations. We will validate our findings through a simulation in the OPNET Modeler environment. In addition, we considered bandwidth efficiency by prohibiting the extra circulation of packets in the redundancy Box (RedBox) and QuadBox implementation as interfaces for HSR and PRP connection and HSR rings interconnection, respectively, which represent the main hindrance in utilizing the combination of these protocols.The need for reliable communications in industrial systems becomes more evident as industries strive to increase reliance on automation. This trend has sustained the adoption of WirelessHART communications as a key enabling technology and its operational integrity must be ensured. This paper focuses on demonstrating pre-deployment counterfeit detection using active 2D Distinct Native Attribute (2D-DNA) fingerprinting. Counterfeit detection is demonstrated using experimentally collected signals from eight commercial WirelessHART adapters. Adapter fingerprints are used to train 56 Multiple Discriminant Analysis (MDA) models with each representing five authentic network devices. The three non-modeled devices are introduced as counterfeits and a total of 840 individual authentic (modeled) versus counterfeit (non-modeled) ID verification assessments performed. Counterfeit detection is performed on a fingerprint-by-fingerprint basis with best case per-device Counterfeit Detection Rate (%CDR) estimates including 87.6% < %CDR < 99.9% and yielding an average cross-device %CDR ≈ 92.5%. This full-dimensional feature set performance was echoed by dimensionally reduced feature set performance that included per-device 87.0% < %CDR < 99.7% and average cross-device %CDR ≈ 91.4% using only 18-of-291 features-the demonstrated %CDR > 90% with an approximate 92% reduction in the number of fingerprint features is sufficiently promising for small-scale network applications and warrants further consideration.
Website: https://www.selleckchem.com/products/puromycin-aminonucleoside.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team