NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Nonscarring scalp hair loss: Which in turn lab examination don't let conduct on to whom?
Recently, learning-based representation techniques have been well exploited for grayscale face image hallucination. For color images, the previous methods only handle the luminance component or each color channel individually, without considering the abundant correlations among different channels as well as the inherent geometrical structure of data manifold. In this article, we propose a learning-based model in quaternion space with graph representation for color face hallucination. Instead of the spatial domain, the color image is represented in the quaternion domain to preserve correlations among different color channels. Moreover, a quaternion graph is learned to smooth the quaternion feature space, which helps to not only stabilize the linear system but also enclose the inherent topology structure of quaternion patch manifold. Besides, considering that single low-resolution (LR) image patch can just provide limited informative information in representation, we propose to simultaneously encode the query smaller LR patch as well as a larger patch containing the surrounding pixels seated at the same position in the objective. The larger patch with rich patterns is used to compensate the lost information in the query LR patch, which further enhances the manifold consistency assumption between the LR and HR patch spaces. The experimental results demonstrated the efficiency of the proposed method in hallucinating color face images.Large-scale optimization has become a significant and challenging research topic in the evolutionary computation (EC) community. Although many improved EC algorithms have been proposed for large-scale optimization, the slow convergence in the huge search space and the trap into local optima among massive suboptima are still the challenges. Targeted to these two issues, this article proposes an adaptive granularity learning distributed particle swarm optimization (AGLDPSO) with the help of machine-learning techniques, including clustering analysis based on locality-sensitive hashing (LSH) and adaptive granularity control based on logistic regression (LR). In AGLDPSO, a master-slave multisubpopulation distributed model is adopted, where the entire population is divided into multiple subpopulations, and these subpopulations are co-evolved. Compared with other large-scale optimization algorithms with single population evolution or centralized mechanism, the multisubpopulation distributed co-evolution mechanism will fully exchange the evolutionary information among different subpopulations to further enhance the population diversity. Furthermore, we propose an adaptive granularity learning strategy (AGLS) based on LSH and LR. The AGLS is helpful to determine an appropriate subpopulation size to control the learning granularity of the distributed subpopulations in different evolutionary states to balance the exploration ability for escaping from massive suboptima and the exploitation ability for converging in the huge search space. The experimental results show that AGLDPSO performs better than or at least comparable with some other state-of-the-art large-scale optimization algorithms, even the winner of the competition on large-scale optimization, on all the 35 benchmark functions from both IEEE Congress on Evolutionary Computation (IEEE CEC2010) and IEEE CEC2013 large-scale optimization test suites.This article studies the problem of the optimal stealth attack strategy design for linear cyber-physical systems (CPSs). Virtual systems that reflect the attacker's target are constructed, and a linear attack model with varying gains is designed based on the virtual models. Unlike the existing optimal stealth attack strategies that are designed based on sufficient conditions, necessary and sufficient conditions are, respectively, established to achieve the optimal attack performance while maintaining stealth in virtue of the solvability of certain coupled recursive Riccati difference equations (RDEs). Under those conditions, an optimal stealth attack strategy is constructed by an offline algorithm. A simulation example is applied to verify the effectiveness of the presented technical scheme.In the recently published paper, a switching method has been proposed to deal with the time derivative of the membership functions and less conservative results can be obtained due to this method; however, this method is based on the assumption that the switching times are finite. In this article, this method is further studied and the average dwell-time (ADT) switching technique is applied to ensure the stability if there is no such assumption. In addition, an algorithm is proposed to find the switching controller gains. The final simulation demonstrates the effectiveness of the developed new results.Upper gastrointestinal (UGI) cancer has been identified as one of the ten most common causes of cancer deaths globally. UGI cancer screening is critical to improving the survival rate of UGI cancer patients. While many approaches to UGI cancer screening rely on single-modality data such as gastroscope imaging, limited studies have been dedicated to UGI cancer screening exploiting multisource and multimodal medical data, which could potentially lead to improved screening results. In this paper, we propose semantic-level cancer-screening network (SCNET), a framework for UGI cancer screening based on semantic-level multimodal upper gastrointestinal data fusion. Specifically, the proposed SCNET consists of a gastrointestinal image recognition flow and a textual medical record processing flow. High-level features of upper gastrointestinal data are extracted by identifying effective feature channels according to the correlation between the textual features and the spatial structure of the image features. The final screening results are obtained after the data fusion step. The experimental results show that the improvement of our approach over the state-of-the-art ones reached 4.01% in average. The source code of SCNET is available at https//github.com/netflymachine/SCNET.Depression is the leading cause of disability, often undiagnosed, and one of the most treatable mood disorders. As such, unobtrusively diagnosing depression is important. Many studies are starting to utilize machine learning for depression sensing from social media and Smartphone data to replace the survey instruments currently employed to screen for depression. In this study, we compare the ability of a privately versus a publicly available modality to screen for depression. Specifically, we leverage between two weeks and a year of text messages and tweets to predict scores from the Patient Health Questionnaire-9, a prevalent depression screening instrument. This is the first study to leverage the retrospectively-harvested crowd-sourced texts and tweets within the combined Moodable and EMU datasets. Our approach involves comprehensive feature engineering, feature selection, and machine learning. Our 245 features encompass word category frequencies, part of speech tag frequencies, sentiment, and volume. The best model is Logistic Regression built on the top ten features from two weeks of text data. This model achieves an average F1 score of 0.806, AUC of 0.832, and recall of 0.925. We discuss the implications of the selected features, temporal quantity of data, and modality.Inertial measurement units (IMU) have been used for gait analysis in many clinical studies, as a more convenient, low cost and less restricted alternative to the laboratory-based motion capture systems or instrumented walkways. Spatial-temporal gait parameters such as gait cycle duration and stride length calculated from the IMUs were often used in these studies for evaluating the impaired gait. However, the spatial-temporal information provided by IMUs is limited, and sometime suffers incomplete and less effective evaluation. In this study, we develop a novel IMU-based method for clinical gait evaluation. Nine gait variables including three spatial-temporal parameters and six kinematic parameters are extracted from two shank-mounted IMUs for quantifying patient's gait deviations. Based on those parameters, an IMU-based gait normalcy index (INI) is derived to evaluate the overall gait performance. Eight inpatient subjects with gait impairments caused by n-hexane neuropathy and ten healthy subjects were recruited. The proposed gait variables and INI were examined on the inpatients at three to five time instants during the rehabilitation process until being discharged. A comparison with healthy subjects and statistical analysis for the changes of gait variables and INI demonstrated that the proposed new set of gait variables and INI can provide adequate and effective information for quantifying gait abnormalities, and help understanding the progress of gait and effectiveness of therapy during rehabilitation process.Model-based Bayesian frameworks proved their effectiveness in the field of ECG processing. However, their performances rely heavily on the pre-defined models extracted from ECG signals. Furthermore, their performances decrease substantially when ECG signals do not comply with their models- a situation generally occurs in the case of arrhythmia-. In this paper, we propose a novel Bayesian framework based on Kalman filter, which does not need a predefined model and can adapt itself to different ECG morphologies. check details Compared with the previous Bayesian techniques, the proposed method requires much less preprocessing and it only needs to know the location of R-peaks to start ECG processing. Our method uses a filter bank comprised of two adaptive Kalman filters, one for denoising QRS complex (high frequency section) and another one for denoising P and T waves (low frequency section). The parameters of these filters are estimated and iteratively updated using expectation maximization (EM) algorithm. In order to deal with nonstationary noises such as muscle artifact (MA) noise, we used Bryson and Henrikson's technique for the prediction and update steps inside the Kalman filter bank. We evaluated the performance of the proposed method on different ECG databases containing signals having morphological changes and abnormalities such as atrial premature complex (APC), premature ventricular contractions (PVC), VT (Ventricular Tachyarrhythmia) and sudden cardiac death. The proposed algorithm was compared with several popular ECG denoising methods such as wavelet transform (WD), extended Kalman filter (EKF) and empirical mode decomposition (EMD). The comparison results showed that the proposed method performs well in the presence of various ECG morphologies in both stationary and non-stationary environments especially at low input SNRs.The identification of retinal lesions plays a vital role in accurately classifying and grading retinopathy. Many researchers have presented studies on optical coherence tomography (OCT) based retinal image analysis over the past. However, to the best of our knowledge, there is no framework yet available that can extract retinal lesions from multi-vendor OCT scans and utilize them for the intuitive severity grading of the human retina. To cater this lack, we propose a deep retinal analysis and grading framework (RAG-FW). RAG-FW is a hybrid convolutional framework that extracts multiple retinal lesions from OCT scans and utilizes them for lesion-influenced grading of retinopathy as per the clinical standards. RAG-FW has been rigorously tested on 43,613 scans from five highly complex publicly available datasets, containing multi-vendor scans, where it achieved the mean intersection-over-union score of 0.8055 for extracting the retinal lesions and the accuracy of 98.70% for the correct severity grading of retinopathy.
Homepage: https://www.selleckchem.com/products/MK-1775.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.