Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems.Colour polymorphisms are a striking example of phenotypic diversity, yet the sources of selection that allow different morphs to persist within populations remain poorly understood. In particular, despite the importance of aggression in mediating social dominance, few studies have considered how heterospecific aggression might contribute to the maintenance or divergence of different colour morphs. To redress this gap, we carried out a field-based study in a Nicaraguan crater lake to investigate patterns of heterospecific aggression directed by the cichlid fish, Hypsophrys nicaraguensis, towards colour polymorphic cichlids in the genus Amphilophus. We found that H. nicaraguensis was the most frequent territorial neighbour of the colour polymorphic A. sagittae. Furthermore, when manipulating territorial intrusions using models, H. nicaraguensis were more aggressive towards the gold than dark colour morph of the sympatric Amphilophus species, including A. sagittae. Sodium acrylate price Such a pattern of heterospecific aggression should be costly to the gold colour morph, potentially accounting for its lower than expected frequency and, more generally, highlighting the importance of considering heterospecific aggression in the context of morph frequencies and coexistence in the wild.Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host-pathogen system house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management.Researchers have long been interested in the evolution of culture and the ways in which change in cultural systems can be reconstructed and tracked. Within the realm of language, these questions are increasingly investigated with Bayesian phylogenetic methods. However, such work in cultural phylogenetics could be improved by more explicit quantification of reconstruction and transition probabilities. We apply such methods to numerals in the languages of Australia. As a large phylogeny with almost universal 'low-limit' systems, Australian languages are ideal for investigating numeral change over time. We reconstruct the most likely extent of the system at the root and use that information to explore the ways numerals evolve. We show that these systems do not increment serially, but most commonly vary their upper limits between 3 and 5. While there is evidence for rapid system elaboration beyond the lower limits, languages lose numerals as well as gain them. We investigate the ways larger numerals build on smaller bases, and show that there is a general tendency to both gain and replace 4 by combining 2 + 2 (rather than inventing a new unanalysable word 'four'). We develop a series of methods for quantifying and visualizing the results.Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.Survival in aquatic environments requires organisms to have effective means of collecting information from their surroundings through various sensing strategies. In this study, we explore how sensing mode and range depend on body size. We find a hierarchy of sensing modes determined by body size. With increasing body size, a larger battery of modes becomes available (chemosensing, mechanosensing, vision, hearing and echolocation, in that order) while the sensing range also increases. This size-dependent hierarchy and the transitions between primary sensory modes are explained on the grounds of limiting factors set by physiology and the physical laws governing signal generation, transmission and reception. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life.Atrial fibrillation is the most common cause of stroke. Treatment with anticoagulants in patients with atrial fibrillation reduces embolic complications of the disease including stroke. However, the commonly used anticoagulant has a narrow therapeutic index, requires routine monitoring, and has numerous drug and food interactions leading to less than optimal rates of adherence. Inhibition of clotting factor Xa has been evaluated as a potential target for anticoagulation therapy with the hypothesis that using target-specific therapy will alleviate some of the dosing variability observed with the vitamin K antagonist. Three factor Xa inhibitors are currently indicated for use in nonvalvular atrial fibrillation. Similar to the vitamin K antagonist, warfarin, all of the factor Xa inhibitors are administered orally. Rivaroxaban and edoxaban are dosed once daily while apixaban is dosed twice daily. All three agents have demonstrated noninferiority when compared with current standard treatment with warfarin for efficacy and safety outcomes. The therapeutic dose of factor Xa inhibitors vary based on renal function. Unlike warfarin, there are no currently available antidotes for the factor Xa inhibitors although this is an area of interest for current and future studies. In the event of a life-threatening bleed there are established management strategies to reverse the bleeding effects of the factor Xa inhibitors.Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and is often refractory to antiepileptic medications. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies suggest that inputs from the presubiculum (PrS) contribute to MEA pathophysiology. We assessed electrophysiologically how PrS influences MEA excitability using the rat pilocarpine model of TLE. PrS-MEA connectivity was confirmed by electrically stimulating PrS afferents while recording from neurons within superficial layers of MEA. Assessment of alterations in PrS-mediated synaptic drive to MEA neurons was made following focal application of either glutamate or NBQX to the PrS in control and epileptic animals. Here, we report that monosynaptic inputs to MEA from PrS neurons are conserved in epileptic rats, and that PrS modulation of MEA excitability is layer-specific. PrS contributes more to synaptic inhibition of LII stellate cells than excitation. Under epileptic conditions, stellate cell inhibition is significantly reduced while excitatory synaptic drive is maintained at levels similar to control. PrS contributes to both synaptic excitation and inhibition of LIII pyramidal cells in control animals. Under epileptic conditions, overall excitatory synaptic drive to these neurons is enhanced while inhibitory synaptic drive is maintained at control levels. Additionally, neither glutamate nor NBQX applied focally to PrS now affected EPSC and IPSC frequency of LIII pyramidal neurons. These layer-specific changes in PrS-MEA interactions are unexpected and of significance in unraveling pathophysiological mechanisms underlying TLE.Progressive accumulation of extracellular potassium ions can trigger propagating waves of spreading depression (SD), which are associated with dramatic increases in extracellular potassium levels ([K(+)]o) and arrest in neural activity. In the central nervous system the restricted nature of the extracellular compartment creates an environment that is vulnerable to disturbances in ionic homeostasis. Here we investigate how changes in the size of the extracellular space induced by alterations in extracellular osmolarity affect locust SD. We found that hypotonic exposure increased susceptibility to experimentally induced SD evidenced by a decrease in the latency to onset and period between individual events. Hypertonic exposure was observed to delay the onset of SD or prevent the occurrence altogether. Additionally, the magnitude of extracellular K(+) concentration ([K(+)]o) disturbance during individual SD events was significantly greater and they were observed to propagate more quickly under hypotonic conditions compared with hypertonic conditions.
Homepage: https://www.selleckchem.com/products/sodium-acrylate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team