NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Integrated Evaluation regarding mRNA- and also miRNA-Seq inside the Ovary of Rare Minnow Gobiocypris rarus as a result of 17α-Methyltestosterone.
Optical coherence tomography (OCT), as an optical interferometric imaging technique, has found wide applications in various fields. In principle, OCT is well suited for imaging layered structures, and thus, one of the typical applications is thickness measurement. However, due to the limited imaging depth resulting from light attenuation, thickness measurement by OCT is limited to non-opaque materials. In this study, we developed a novel (to the best of our knowledge) dual-side view OCT (DSV-OCT) system for thickness measurement on opaque materials. The dual-side view was achieved on a conventional swept source OCT platform by creating two symmetrical sampling arms. This allows us to image both sides of the material simultaneously and produce the surface contours of the two sides in a single C scan. Finally, the thickness of the opaque material can be calculated from the two surface contours above. We demonstrated that our DSV-OCT technique can measure the thickness of opaque material with an accuracy of about 3 µm.Multiple light scattering in biomedical tissue limits the penetration depth of optical imaging systems such as optical coherence tomography. To increase the imaging depth in scattering media, a computational method based on coherent reflection matrix measurement has been developed using low coherence interferometry. The complex reflection matrix is obtained via point-by-point scanning followed by a phase-shifting method; then singular value decomposition is used to retrieve the singly back-scattered light. However, the in vivo application of the current reported method is limited due to the slow acquisition speed of the matrix. In this Letter, a wide-field heterodyne-detection method is adopted to speed up the complex matrix measurement at a deep tissue layer. Compared to the phase-shifting method, the heterodyne-detection scheme retrieves depth-resolved complex amplitudes faster and is more stable without mechanical movement of the reference mirror. find more As a result, the matrix measurement speed is increased by more than one order of magnitude.This publisher's note contains corrections to Opt. Lett.44, 2586 (2019)OPLEDP0146-959210.1364/OL.44.002586.Recent advances in nanotechnology have prompted the need for tools to accurately and noninvasively manipulate individual nano-objects. Among the possible strategies, optical forces have been widely used to enable nano-optical tweezers capable of trapping or moving a specimen with unprecedented accuracy. Here, we propose an architecture consisting of a nanotip excited with a plasmonic vortex enabling effective dynamic control of nanoparticles in three dimensions. The structure illuminated by a beam with angular momentum can generate an optical field that can be used to manipulate single dielectric nanoparticles. We demonstrate that it is possible to stably trap or push the particle from specific points, thus enabling a new, to the best of our knowledge, platform for nanoparticle manipulation.An 852 nm semiconductor laser is experimentally subjected to phase-conjugate time-delayed feedback achieved through four-wave mixing in a photorefractive ($ rm BaTiO_3 $BaTiO3) crystal. Permutation entropy (PE) is used to uncover distinctive temporal signatures corresponding to the sub-harmonics of the round-trip time and the relaxation oscillations. Complex spatiotemporal outputs with high PE mostly upwards of $ sim 0.85 $∼0.85 and chaos bandwidth (BW) up to $ sim 31;rm GHz $∼31GHz are observed over feedback strengths up to 7%. The low-feedback region counterintuitively exhibits spatiotemporal reorganization, and the variation in the chaos BW is restricted within a small range of 1.66 GHz, marking the transition between the dynamics driven by the relaxation oscillations and the external cavity round-trip time. The immunity of the chaos BW and the complexity against such spatiotemporal reorganization show promise as an excellent candidate for secure communication applications.An all-optical tunable whispering gallery mode (WGM) lasing from the liquid-filled hollow glass microsphere (LFHGM) is proposed and experimentally verified. The LFHGM-based microlaser is prepared by injecting $rm NaNdF_4/rm dye$NaNdF4/dye co-doped liquid into the HGM, and WGM resonance is obtained under excitation of a 532 nm pulse laser. Since the high-efficiency absorption of the 793 nm continuous-wave laser by $rm NaNdF_4$NaNdF4 nanocrystals (NCs) can result in photothermal effect-induced effective refractive index change of the microcavity, a secondary 793 nm laser is irradiated into the LFHGM to excite the $rm NaNdF_4$NaNdF4 dispersed in the liquid core, thereby realizing a shift of resonant frequencies. The influence of the doping concentration of $rm NaNdF_4$NaNdF4 NCs on the tuning range and the sensitivity over the power intensity range of $0-1.68;rm W/mm^2$0-1.68W/mm2 are investigated experimentally, obtaining maximum values of 4.95 and $2.95;rm nm/(rm W;rm mm^ - 2)$2.95nm/(Wmm-2). The ability to generate stable lasing in a LFHGM cavity highlights the practical application of the microscale lasers in future all-optical networks.A mode insensitive switch is proposed and experimentally demonstrated on a silicon-on-insulator platform using a balanced Mach-Zehnder interferometer structure with a mode insensitive phase shifter for on-chip mode division multiplexing interconnects. Switching the first three quasi-transverse electric (TE) modes, consuming less than 40 mW power is demonstrated. The whole system exhibits approximately $ - 2,; - 3.7$-2,-3.7, and $ - 5.2;rm dB$-5.2dB insertion loss for the TE0, TE1, and TE2 modes at 1550 nm, respectively. The corresponding crosstalk is less than $ - 8.6;(rm - 9), - 8 ( - 10.3)$-8.6(-9),-8(-10.3), and $ - 10;rm dB$-10dB ($ - 10.3;rm dB$-10.3dB) within the wavelength range of 40 nm (1535-1575 nm) for the cross (bar) states, respectively. The extinction ratios (ERs) for the cross (bar) states are 20.1 (19.5), 22.8 (33.7), and 15.4 dB (18.1 dB) for the TE0, TE1, and TE2 modes at 1550 nm, respectively. The payload transmission is also conducted using non-return-to-zero pseudorandom binary sequence (PRBS)-31 data signals at 10 Gb/s for single-mode transmission and simultaneous three-mode transmissions.
Read More: https://www.selleckchem.com/products/rbn-2397.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.