NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Write a note in this area. It's really easIn June 2015 the World Health Organization's (WHO) International Agency for Research on Cancer (IARC) confirmed its 1987 classification of 2,4-D as a possible carcinogen.[26][27]

On August 8, 2007, the EPA issued a ruling that existing data do not support a link between human cancer and 2,4-D exposure.[28]

A 1995 panel of 13 scientists reviewing studies on the carcinogenicity of 2,4-D had divided opinions. None of the scientists thought the weight of the evidence indicated that 2,4-D was a “known” or “probable” cause of human cancer. The predominant opinion indicated that it is possible that 2,4-D can cause cancer in humans, although not all of the panelists believed the possibility was equally likely: one thought the possibility was strong, leaning toward probable, and five thought the possibility was remote, leaning toward unlikely. Two panelists believed it unlikely that 2,4-D can cause cancer in humans.[29]

In a prior 1987 report the IARC classified some chlorphenoxy herbicides including 2,4-D, MCPA and 2,4,5-T as a group as class 2B carcinogens - "possibly carcinogenic to humans".[30]

Contaminants[edit]
A July 2013 Four Corners investigation found elevated levels of dioxins in a generic version of 2,4-D, one of Australia's most widely used herbicides. One scientist said the product tested by Four Corners, which was imported from China, had "one of the highest dioxin readings for 2,4-D in the last 10 to 20 years, and could pose potential health risks."[31]

Metabolism[edit]
When radioactively-labeled 2,4 D was fed to livestock, 90% or more of the total radioactive residue (TRR) was shed in urine unchanged or as conjugated forms of 2,4-D. A relatively small portion of 2,4 D was metabolized into dichlorophenol and into dichloroanisole and 4-chlorophenoxyacetic acid. (6.9% of the TRR in milk) and 2,4-dichlorophenol13 (5% of the TRR in milk; 7.3% of the TRR in eggs and 4% of the TRR in chicken liver). Residue levels in kidney were the highest.[16]:21

Environmental behavior[edit]
Owing to the longevity and extent of use, 2,4-D has been evaluated several times by regulators and review committees.[32][33]

2,4-D amine salts and esters are not persistent under most environmental conditions.[9] The degradation of 2,4-D is rapid (half life of 6.2 days) in aerobic mineral soils.[24]:54 2,4-D is broken down by microbes in soil, in processes that involve hydroxylation, cleavage of the acid side-chain, decarboxylation, and ring opening. The ethyl hexyl form of the compound is rapidly hydrolyzed in soil and water to form the 2,4-D acid.[9] 2,4-D has a low binding affinity in mineral soils and sediment, and in those conditions is considered intermediately to highly mobile, and therefore likely to leach if not degraded.[9]

In aerobic aquatic environments, the half life is 15 days, while in anaerobic aquatic environments, 2,4-D was moderately persistent to persistent (half life of = 41 to 333 days). 2,4-D has been detected in streams and shallow groundwater at low concentrations, in both rural and urban areas. Breakdown is pH dependent.[9]

"The ester forms of 2,4-D can be highly toxic to fish and other aquatic life. 2,4-D generally has moderate toxicity to birds and mammals, is slightly toxic to fish and aquatic invertebrates, and is practically nontoxic to honeybees" per EPA.[23][date missing]

Microbial breakdown[edit]
A number of 2,4-D-degrading bacteria have been isolated and characterized from a variety of environmental habitats.[34][35] Metabolic pathways for the compound’s degradation have been available for many years, and genes encoding 2,4-D catabolism have been identified for several organisms. As a result of the extensive metadata on environmental behavior, physiology and genetics, 2,4-D was the first herbicide for which the bacteria actively responsible for in situ degradation was demonstrated.[36] This was accomplished using the technique of DNA-based stable isotope probing, which enables a microbial function (activity), such as degrading a chemical, to be linked with the organism’s identity without the need to culture the organism involved.[37]

degrading soil bacteria. FEMS Microbiology Ecology 29: 45-58.
Jump up ^ Suwa Y.; Wright A.D.; Fukimori F.; Nummy K.A.; Hausinger R.P.; Holben W.E.; Forney L.J. (1996). "Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid alpha-ketoglutafate dioxygenase from Burkholderia sp. strain RASC". Applied and Environmental Microbiology. 62 (7): 2464–2469. PMC 168028Freely accessible. PMID 8779585.
Jump up ^ Cupples A.M.; Sims G.K. (2007). "Identification of In Situ 2,4-Dichlorophenoxyacetic Acid-Degrading Soil Microorganisms using DNA-Stable Isotope Probing". Soil Biology and Biochemistry. 39: 232–238. doi:10.1016/j.soilbio.2006.07.011.
Jump up ^ Radajewski S.; Ineson P.; Parekh N.R.; Murrell J.C. (2000). "Stable-isotope probing as a tool in microbial ecology". Nature. 403 (6770): 646–649. Bibcode:2000Natur.403..646R. doi:10.1038/35001054. PMID 10688198.
Jump up ^ "The Pesticides Management Code - Protecting the environment and health in our green spaces". Mddep.gouv.qc.ca. 2005-04-03. Retrieved 2014-05-03.
Jump up ^ "Ministry of the Environment | Ontario.ca". Ene.gov.on.ca. Retrieved 2014-05-03.
Jump up ^ BARRIE MCKENNA (May 27, 2011). "Deal confirms government's right to ban 'cosmetic' pesticides, minister says". The Globe and Mail. Retrieved 26 June 2015.
Jump up ^ "Health Canada Pest Management Regulatory Agency Re-evaluation Update 2,4-D REV2013-02". Hc-sc.gc.ca. Retrieved 2014-05-03.
Jump up ^ "Petition to Revoke All Tolerances and Cancel All Registrations for the Pesticide 2,4-Dichlorophenoxyacetic Acid (2,4-D); Notice of Availability" (Docket Folder Summary). Docket ID: EPA-HQ-OPP-2008-0877 Agency: EPA. United States Environmental Protection Agency. April 7, 2012. Retrieved September 12, 2012.
Jump up ^ "2,4-D; Order Denying NRDC's Petition To Revoke Tolerances" (Order). Federal Register. 77 (75 (Wednesday, April 18, 2012)): 23135–23158. April 18, 2012. Retrieved September 12, 2012. Petitions to Revoke Tolerances; Denials: Natural Resources Defense Council, 2,4-dichlorophenoxyacetic acid (2-4D) Document ID: EPA-HQ-OPP-2008-0877-0446 Document Type: Rule Docket ID: EPA-HQ-OPP-2008-0877
^ Jump up to: a b c EPA Press Release. October 15, 2014 EPA Announces Final Decision to Register Enlist Duo, Herbicide Containing 2, 4-D and Glyphosate/Risk assessment ensures protection of human health, including infants, children EPA Documents: Registration of Enlist Duo
Jump up ^ Vogt, Willie (January 26, 2016). "Ninth Circuit Court denies move by EPA to vacate herbicide label". Farm Futures. Retrieved 2016-02-05.
Jump up ^ "U.S. court upholds Enlist Duo registration". AGCanada.com. January 29, 2016. Retrieved 2016-02-05.
Jump up ^ "APVMA 2,4-D Review webpage". APVMA.
Jump up ^ "Annex to the APVMA's Preliminary Review Findings (Environment) Part 1 2,4-D Esters Volume 1 Review Summary April 2006" (PDF). APVMA. July 2013. Archived from the original (PDF) on 6 June 2014. Retrieved 25 August 2016.
Jump up ^ Song Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol. 2014 Feb;56(2):106-13. doi: 10.1111/jipb.12131. PMID 24237670
Jump up ^ International Programme on Chemical Safety (1984). "2,4-Dichlorophenoxyacetic Acid (2,4-D)". UNEP, WHO ILO. Retrieved 22 June 2010.
Jump up ^ Wright TR et al. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20240-5. doi 10.1073/pnas.1013154107 PMCID 2996712 PMID 21059954
^ Jump up to: a b ISAAA GM Approval Database GM Approval Database Genes List, Gene: aad1. International Service for the Acquisition of Agri-biotech Applications (ISAAA), n.d. accessed February 27, 2015
Jump up ^ Mark A. Peterson, Guomin Shan, Terence A. Walsh, and Terry R. Wright. Utility of Aryloxyalkanoate Dioxygenase Transgenes for Development of New Herbicide Resistant Crop Technologies ISB News Report,3 pages, May 2011, Research & Development, Dow AgroSciences, Indianapolis
Jump up ^ Andrew Pollack (April 25, 2012). "Dow Weed Killer, Nearing Approval, Runs Into Opposition". The New York Times. Retrieved April 25, 2012.
^ Jump up to: a b Donna Fleury (April 2014). "Enlist weed control system in Canada. A new tool for managing hard to control and resistant weeds". AG Annex. Retrieved May 3, 2014.
Jump up ^ Brandon Keim (25 September 2014). "New Generation of GM Crops Puts Agriculture in a 'Crisis Situation'". Wired. Condé Nast. Retrieved 13 April 2015.
Jump up ^ Troyer, James (2001). "In the beginning: the multiple discovery of the first hormone herbicides". Weed Science. 49 (2): 290–297. doi:10.1614/0043-1745(2001)049[0290:ITBTMD]2.0.CO;2.
Jump up ^ W. G. Templeman, C. J. Marmoy. The effect upon the growth of plants of watering with solutions of plant-growth substances and of seed dressings containing these materials. Annals of Applied Biology 06/2008; 27(4):453 - 471. doi:10.1111/j.1744-7348.1940
^ Jump up to: a b c d Andrew H. Cobb, John P. H. Reade. Herbicides and Plant Physiology. Wiley-Blackwell; 2nd edition (October 25, 2010) ISBN 978-1405129350
Jump up ^ Robert Pokorny.New Compounds. Some Chlorophenoxyacetic Acids J. Am. Chem. Soc., June 1941, 63 (6), pp 1768–1768 doi:10.1021/ja01851a601
Jump up ^ "The weed-crop connection". University of California at Davis. Retrieved 2015-11-23.
Jump up ^ Waterer, D; Roy, D; Szaroz, P (2009). "Potential to use Plant Growth Regulators to Enhance the Appearance of Red-Skinned Potatoes". University of Saskatchewan.
Jump up ^ J. H. Quastel. 2,4-dichlorophenoxyacetic acid (2,4-D) as a selective herbicide. Chapter 45 (pp 244-249) in Advances in Chemistry, Vol. 1: Agricultural Control Chemicals: Collected Papers from the Symposia on Economic Poisons presented before the Division of Agricultural and Food Chemistry of the American Chemical Society at the 115th national meeting in San Francisco, March 28 to April 1, 1949, and the 116th national meeting in Atlantic City, September 18 to 23, 1949. American Chemical Society, 1950. Washington, D.C. ISBN 9780841224421
Jump up ^ Hamner CL, Tukey HB (1944). "The Herbicidal Action of 2,4 Dichlorophenoxyacetic and 2,4,5 Trichlorophenoxyacetic Acid on Bindweed" (PDF). Science. 100 (2590): 154–155. Bibcode:1944Sci...100..154H. doi:10.1126/science.100.2590.154. PMID 17778584.
Jump up ^ PAN Pesticides Database. 2,4-D, choline salt Page accessed April 24, 2015
Jump up ^ Josh Flint for Prairie Farmer. August 31, 2011 Dow AgroSciences Names Its Newest Herbicide Offering Enlist Duo
[1]

External links and further reading[edit]
Wikimedia Commons has media related to 2,4-Dichlorophenoxyacetic acid.
CDC - NIOSH Pocket Guide to Chemical Hazards
Overview of the toxic effects of 2,4-D Sierra Club Canada January, 2005
"Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology" Review of the literature by Dow scientists Crit Rev Toxicol. Oct 2012
[hide] v t e
Pest control: herbicides
Anilides/anilines
acetochlor alachlor asulam benfluralin butachlor diethatyl diflufenican dimethenamid flamprop metazachlor metolachlor pendimethalin pretilachlor propachlor propanil trifluralin
Aromatic acids
aminopyralid chloramben clopyralid dicamba picloram pyrithiobac quinclorac quinmerac
Arsenicals
cacodylic acid copper arsenate DSMA MSMA
Organophosphorus
bensulide bialaphos ethephon fosamine glufosinate glyphosate piperophos
Phenoxy
2,4-D 2,4-DB dichlorprop fenoprop MCPA MCPB 2,4,5-T
Pyridines
dithiopyr fluroxypyr imazapyr thiazopyr triclopyr
Quaternary
diquat MPP paraquat
Triazines
ametryn atrazine cyanazine hexazinone prometon prometryn propazine simazine simetryn terbuthylazine terbutryn
Ureas
chlortoluron DCMU metsulfuron-methyl monolinuron tebuthiuron
Others
3-AT aminocyclopyrachlor bromoxynil clomazone DCBN dinoseb juglone mesotrione methazole metam sodium metamitron metribuzin sulfentrazone
Authority control
LCCN: sh85037669 GND: 4229553-1
Jump up ^ Dibbisa D., Egigu M.C., Muthuswamy M. (2016). "Delaying Postharvest Ripening of Tomato (Lycopersicon Esculenthum Mill.) by using 2,D-Dichlorophenoxy Acetic Acid". International Journal of Current Research and Review. 8 (2): 65.
Categories: ChloroarenesAuxinic herbicidesPhenol ethersAcetic acidsPlant growth regulatorsIARC Group 2B carcinogens
Navigation menu
Not logged inTalkContributionsCreate accountLog inArticleTalkReadEditView historySearch

Search Wikipedia
Go
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page
Print/export
Create a book
Download as PDF
Printable version
In other projects
Wikimedia Commons
Languages
Català
Čeština
Dansk
Deutsch
Español
Esperanto
فارسی
Français
Galego
한국어
हिन्दी
Bahasa Indonesia
Italiano
Magyar
Nederlands
日本語
Norsk bokmål
Polski
Português
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
தமிழ்
ไทย
中文
Edit links
This page was last modified on 3 November 2016, at 23:15.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersCookie statementMobile viewy to share with others. Click here ...
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.