NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io


import torch
import math
from torch import nn
import torch.nn.functional as F

def scaled_dot_product(q, k, v, mask=None):
d_k = q.size()[-1]
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
print(f"scaled.size() : {scaled.size()}")
if mask is not None:
print(f"-- ADDING MASK of shape {mask.size()} --")
# Broadcasting add. So just the last N dimensions need to match
scaled += mask
attention = F.softmax(scaled, dim=-1)
values = torch.matmul(attention, v)
return values, attention

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.qkv_layer = nn.Linear(d_model , 3 * d_model)
self.linear_layer = nn.Linear(d_model, d_model)

def forward(self, x, mask=None):
batch_size, max_sequence_length, d_model = x.size()
print(f"x.size(): {x.size()}")
qkv = self.qkv_layer(x)
print(f"qkv.size(): {qkv.size()}")
qkv = qkv.reshape(batch_size, max_sequence_length, self.num_heads, 3 * self.head_dim)
print(f"qkv.size(): {qkv.size()}")
qkv = qkv.permute(0, 2, 1, 3)
print(f"qkv.size(): {qkv.size()}")
q, k, v = qkv.chunk(3, dim=-1)
print(f"q size: {q.size()}, k size: {k.size()}, v size: {v.size()}, ")
values, attention = scaled_dot_product(q, k, v, mask)
print(f"values.size(): {values.size()}, attention.size:{ attention.size()} ")
values = values.reshape(batch_size, max_sequence_length, self.num_heads * self.head_dim)
print(f"values.size(): {values.size()}")
out = self.linear_layer(values)
print(f"out.size(): {out.size()}")
return out


class LayerNormalization(nn.Module):
def __init__(self, parameters_shape, eps=1e-5):
super().__init__()
self.parameters_shape=parameters_shape
self.eps=eps
self.gamma = nn.Parameter(torch.ones(parameters_shape))
self.beta = nn.Parameter(torch.zeros(parameters_shape))

def forward(self, inputs):
dims = [-(i + 1) for i in range(len(self.parameters_shape))]
mean = inputs.mean(dim=dims, keepdim=True)
print(f"Mean ({mean.size()})")
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
std = (var + self.eps).sqrt()
print(f"Standard Deviation ({std.size()})")
y = (inputs - mean) / std
print(f"y: {y.size()}")
out = self.gamma * y + self.beta
print(f"self.gamma: {self.gamma.size()}, self.beta: {self.beta.size()}")
print(f"out: {out.size()}")
return out


class PositionwiseFeedForward(nn.Module):

def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)

def forward(self, x):
x = self.linear1(x)
print(f"x after first linear layer: {x.size()}")
x = self.relu(x)
print(f"x after activation: {x.size()}")
x = self.dropout(x)
print(f"x after dropout: {x.size()}")
x = self.linear2(x)
print(f"x after 2nd linear layer: {x.size()}")
return x


class EncoderLayer(nn.Module):

def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.norm1 = LayerNormalization(parameters_shape=[d_model])
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNormalization(parameters_shape=[d_model])
self.dropout2 = nn.Dropout(p=drop_prob)

def forward(self, x):
residual_x = x
print("------- ATTENTION 1 ------")
x = self.attention(x, mask=None)
print("------- DROPOUT 1 ------")
x = self.dropout1(x)
print("------- ADD AND LAYER NORMALIZATION 1 ------")
x = self.norm1(x + residual_x)
residual_x = x
print("------- ATTENTION 2 ------")
x = self.ffn(x)
print("------- DROPOUT 2 ------")
x = self.dropout2(x)
print("------- ADD AND LAYER NORMALIZATION 2 ------")
x = self.norm2(x + residual_x)
return x

class Encoder(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, num_layers):
super().__init__()
self.layers = nn.Sequential(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
for _ in range(num_layers)])

def forward(self, x):
x = self.layers(x)
return x




d_model = 512
num_heads = 8
drop_prob = 0.1
batch_size = 30
max_sequence_length = 200
ffn_hidden = 2048
num_layers = 5

encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers)


encoder

import torch
import math
from torch import nn
import torch.nn.functional as F

def scaled_dot_product(q, k, v, mask=None):
# q: 30 x 8 x 200 x 64, k: 30 x 8 x 200 x 64, v: 30 x 8 x 200 x 64, mask 200 x 200
d_k = q.size()[-1]
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k) # 30 x 8 x 200 x 200
print(f"scaled.size() : {scaled.size()}")
if mask is not None:
print(f"-- ADDING MASK of shape {mask.size()} --")
scaled += mask # 30 x 8 x 200 x 200
attention = F.softmax(scaled, dim=-1) # 30 x 8 x 200 x 200
values = torch.matmul(attention, v) # 30 x 8 x 200 x 64
return values, attention


class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)

def forward(self, x):
# x: 30 x 200 x 512
x = self.linear1(x) #30 x 200 x 2048
print(f"x after first linear layer: {x.size()}")
x = self.relu(x) #30 x 200 x 2048
print(f"x after relu layer: {x.size()}")
x = self.dropout(x) #30 x 200 x 2048
print(f"x after dropout layer: {x.size()}")
x = self.linear2(x) #30 x 200 x 512
print(f"x after 2nd linear layer: {x.size()}")
return x #30 x 200 x 512


class LayerNormalization(nn.Module):
def __init__(self, parameters_shape, eps=1e-5):
super().__init__()
self.parameters_shape=parameters_shape
self.eps=eps
self.gamma = nn.Parameter(torch.ones(parameters_shape)) # 512
self.beta = nn.Parameter(torch.zeros(parameters_shape)) # 512

def forward(self, inputs):
# inputs : 30 x 200 x 512
dims = [-(i + 1) for i in range(len(self.parameters_shape))] # [-1]
print(f"dims: {dims}")
mean = inputs.mean(dim=dims, keepdim=True) #30 x 200 x 1
print(f"Mean ({mean.size()})")
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True) # 30 x 200 x 512
std = (var + self.eps).sqrt() # 30 x 200 x 512
print(f"Standard Deviation ({std.size()})")
y = (inputs - mean) / std # 30 x 200 x 512
print(f"y: {y.size()}")
out = self.gamma * y + self.beta # 30 x 200 x 512
print(f"out: {out.size()}")
return out

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.qkv_layer = nn.Linear(d_model , 3 * d_model) # 1536
self.linear_layer = nn.Linear(d_model, d_model)

def forward(self, x, mask=None):
batch_size, sequence_length, d_model = x.size() # 30 x 200 x 512
print(f"x.size(): {x.size()}")
qkv = self.qkv_layer(x) # 30 x 200 x 1536
print(f"qkv.size(): {qkv.size()}")
qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim) # 30 x 200 x 8 x 192
print(f"qkv after reshape .size(): {qkv.size()}")
qkv = qkv.permute(0, 2, 1, 3) # 30 x 8 x 200 x 192
print(f"qkv after permutation: {qkv.size()}")
q, k, v = qkv.chunk(3, dim=-1) # q: 30 x 8 x 200 x 64, k: 30 x 8 x 200 x 64, v: 30 x 8 x 200 x 64
print(f"q: {q.size()}, k:{k.size()}, v:{v.size()}")
values, attention = scaled_dot_product(q, k, v, mask) # values: 30 x 8 x 200 x 64
print(f"values: {values.size()}, attention:{attention.size()}")
values = values.reshape(batch_size, sequence_length, self.num_heads * self.head_dim) # 30 x 200 x 512
print(f"values after reshaping: {values.size()}")
out = self.linear_layer(values) # 30 x 200 x 512
print(f"out after passing through linear layer: {out.size()}")
return out # 30 x 200 x 512


class MultiHeadCrossAttention(nn.Module):

def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.kv_layer = nn.Linear(d_model , 2 * d_model) # 1024
self.q_layer = nn.Linear(d_model , d_model)
self.linear_layer = nn.Linear(d_model, d_model)

def forward(self, x, y, mask=None):
batch_size, sequence_length, d_model = x.size() # 30 x 200 x 512
print(f"x.size(): {x.size()}")
kv = self.kv_layer(x) # 30 x 200 x 1024
print(f"kv.size(): {kv.size()}")
q = self.q_layer(y) # 30 x 200 x 512
print(f"q.size(): {q.size()}")
kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim) # 30 x 200 x 8 x 128
q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim) # 30 x 200 x 8 x 64
kv = kv.permute(0, 2, 1, 3) # 30 x 8 x 200 x 128
q = q.permute(0, 2, 1, 3) # 30 x 8 x 200 x 64
k, v = kv.chunk(2, dim=-1) # K: 30 x 8 x 200 x 64, v: 30 x 8 x 200 x 64
values, attention = scaled_dot_product(q, k, v, mask) # 30 x 8 x 200 x 64
print(f"values: {values.size()}, attention:{attention.size()}")
values = values.reshape(batch_size, sequence_length, d_model) # 30 x 200 x 512
out = self.linear_layer(values) # 30 x 200 x 512
print(f"out after passing through linear layer: {out.size()}")
return out # 30 x 200 x 512


class DecoderLayer(nn.Module):

def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
super(DecoderLayer, self).__init__()
self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.norm1 = LayerNormalization(parameters_shape=[d_model])
self.dropout1 = nn.Dropout(p=drop_prob)
self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
self.norm2 = LayerNormalization(parameters_shape=[d_model])
self.dropout2 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm3 = LayerNormalization(parameters_shape=[d_model])
self.dropout3 = nn.Dropout(p=drop_prob)

def forward(self, x, y, decoder_mask):
_y = y # 30 x 200 x 512
print("MASKED SELF ATTENTION")
y = self.self_attention(y, mask=decoder_mask) # 30 x 200 x 512
print("DROP OUT 1")
y = self.dropout1(y) # 30 x 200 x 512
print("ADD + LAYER NORMALIZATION 1")
y = self.norm1(y + _y) # 30 x 200 x 512

_y = y # 30 x 200 x 512
print("CROSS ATTENTION")
y = self.encoder_decoder_attention(x, y, mask=None) #30 x 200 x 512
print("DROP OUT 2") #30 x 200 x 512
y = self.dropout2(y)
print("ADD + LAYER NORMALIZATION 2")
y = self.norm2(y + _y) #30 x 200 x 512

_y = y #30 x 200 x 512
print("FEED FORWARD 1")
y = self.ffn(y) #30 x 200 x 512
print("DROP OUT 3")
y = self.dropout3(y) #30 x 200 x 512
print("ADD + LAYER NORMALIZATION 3")
y = self.norm3(y + _y) #30 x 200 x 512
return y #30 x 200 x 512

class SequentialDecoder(nn.Sequential):
def forward(self, *inputs):
x, y, mask = inputs
for module in self._modules.values():
y = module(x, y, mask) #30 x 200 x 512
return y

class Decoder(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, num_layers=1):
super().__init__()
self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
for _ in range(num_layers)])

def forward(self, x, y, mask):
#x : 30 x 200 x 512
#y : 30 x 200 x 512
#mask : 200 x 200
y = self.layers(x, y, mask)
return y #30 x 200 x 512


!pip install pandas-ods-reader

     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.