Notes
Notes - notes.io |
import torch
import math
from torch import nn
import torch.nn.functional as F
def get_device():
return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def scaled_dot_product(q, k, v, mask=None):
d_k = q.size()[-1]
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
if mask is not None:
scaled = scaled.permute(1, 0, 2, 3) + mask
scaled = scaled.permute(1, 0, 2, 3)
attention = F.softmax(scaled, dim=-1)
values = torch.matmul(attention, v)
return values, attention
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_sequence_length):
super().__init__()
self.max_sequence_length = max_sequence_length
self.d_model = d_model
def forward(self):
even_i = torch.arange(0, self.d_model, 2).float()
denominator = torch.pow(10000, even_i/self.d_model)
position = (torch.arange(self.max_sequence_length)
.reshape(self.max_sequence_length, 1))
even_PE = torch.sin(position / denominator)
odd_PE = torch.cos(position / denominator)
stacked = torch.stack([even_PE, odd_PE], dim=2)
PE = torch.flatten(stacked, start_dim=1, end_dim=2)
return PE
class SentenceEmbedding(nn.Module):
"For a given sentence, create an embedding"
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
super().__init__()
self.vocab_size = len(language_to_index)
self.max_sequence_length = max_sequence_length
self.embedding = nn.Embedding(self.vocab_size, d_model)
self.language_to_index = language_to_index
self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
self.dropout = nn.Dropout(p=0.1)
self.START_TOKEN = START_TOKEN
self.END_TOKEN = END_TOKEN
self.PADDING_TOKEN = PADDING_TOKEN
def batch_tokenize(self, batch, start_token, end_token):
def tokenize(sentence, start_token, end_token):
sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
if start_token:
sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
if end_token:
sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
for _ in range(len(sentence_word_indicies), self.max_sequence_length):
sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
return torch.tensor(sentence_word_indicies)
tokenized = []
for sentence_num in range(len(batch)):
tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
tokenized = torch.stack(tokenized)
return tokenized.to(get_device())
def forward(self, x, start_token, end_token): # sentence
x = self.batch_tokenize(x, start_token, end_token)
x = self.embedding(x)
pos = self.position_encoder().to(get_device())
x = self.dropout(x + pos)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.qkv_layer = nn.Linear(d_model , 3 * d_model)
self.linear_layer = nn.Linear(d_model, d_model)
def forward(self, x, mask):
batch_size, sequence_length, d_model = x.size()
qkv = self.qkv_layer(x)
qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim)
qkv = qkv.permute(0, 2, 1, 3)
q, k, v = qkv.chunk(3, dim=-1)
values, attention = scaled_dot_product(q, k, v, mask)
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim)
out = self.linear_layer(values)
return out
class LayerNormalization(nn.Module):
def __init__(self, parameters_shape, eps=1e-5):
super().__init__()
self.parameters_shape=parameters_shape
self.eps=eps
self.gamma = nn.Parameter(torch.ones(parameters_shape))
self.beta = nn.Parameter(torch.zeros(parameters_shape))
def forward(self, inputs):
dims = [-(i + 1) for i in range(len(self.parameters_shape))]
mean = inputs.mean(dim=dims, keepdim=True)
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
std = (var + self.eps).sqrt()
y = (inputs - mean) / std
out = self.gamma * y + self.beta
return out
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.norm1 = LayerNormalization(parameters_shape=[d_model])
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNormalization(parameters_shape=[d_model])
self.dropout2 = nn.Dropout(p=drop_prob)
def forward(self, x, self_attention_mask):
residual_x = x.clone()
x = self.attention(x, mask=self_attention_mask)
x = self.dropout1(x)
x = self.norm1(x + residual_x)
residual_x = x.clone()
x = self.ffn(x)
x = self.dropout2(x)
x = self.norm2(x + residual_x)
return x
class SequentialEncoder(nn.Sequential):
def forward(self, *inputs):
x, self_attention_mask = inputs
for module in self._modules.values():
x = module(x, self_attention_mask)
return x
class Encoder(nn.Module):
def __init__(self,
d_model,
ffn_hidden,
num_heads,
drop_prob,
num_layers,
max_sequence_length,
language_to_index,
START_TOKEN,
END_TOKEN,
PADDING_TOKEN):
super().__init__()
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
for _ in range(num_layers)])
def forward(self, x, self_attention_mask, start_token, end_token):
x = self.sentence_embedding(x, start_token, end_token)
x = self.layers(x, self_attention_mask)
return x
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team