Notes
Notes - notes.io |
// http://github.com/bgrins/javascript-astar
// Freely distributable under the MIT License.
// Implements the astar search algorithm in javascript using a Binary Heap.
// Includes Binary Heap (with modifications) from Marijn Haverbeke.
// http://eloquentjavascript.net/appendix2.html
(function(definition) {
/* global module, define */
if (typeof module === 'object' && typeof module.exports === 'object') {
module.exports = definition();
} else if (typeof define === 'function' && define.amd) {
define([], definition);
} else {
var exports = definition();
window.astar = exports.astar;
window.Graph = exports.Graph;
}
})(function() {
function pathTo(node) {
var curr = node;
var path = [];
while (curr.parent) {
path.unshift(curr);
curr = curr.parent;
}
return path;
}
function getHeap() {
return new BinaryHeap(function(node) {
return node.f;
});
}
var astar = {
/**
* Perform an A* Search on a graph given a start and end node.
* @param {Graph} graph
* @param {GridNode} start
* @param {GridNode} end
* @param {Object} [options]
* @param {bool} [options.closest] Specifies whether to return the
path to the closest node if the target is unreachable.
* @param {Function} [options.heuristic] Heuristic function (see
* astar.heuristics).
*/
search: function(graph, start, end, options) {
graph.cleanDirty();
options = options || {};
var heuristic = options.heuristic || astar.heuristics.manhattan;
var closest = options.closest || false;
var openHeap = getHeap();
var closestNode = start; // set the start node to be the closest if required
start.h = heuristic(start, end);
graph.markDirty(start);
openHeap.push(start);
while (openHeap.size() > 0) {
// Grab the lowest f(x) to process next. Heap keeps this sorted for us.
var currentNode = openHeap.pop();
// End case -- result has been found, return the traced path.
if (currentNode === end) {
return pathTo(currentNode);
}
// Normal case -- move currentNode from open to closed, process each of its neighbors.
currentNode.closed = true;
// Find all neighbors for the current node.
var neighbors = graph.neighbors(currentNode);
for (var i = 0, il = neighbors.length; i < il; ++i) {
var neighbor = neighbors[i];
if (neighbor.closed || neighbor.isWall()) {
// Not a valid node to process, skip to next neighbor.
continue;
}
// The g score is the shortest distance from start to current node.
// We need to check if the path we have arrived at this neighbor is the shortest one we have seen yet.
var gScore = currentNode.g + neighbor.getCost(currentNode);
var beenVisited = neighbor.visited;
if (!beenVisited || gScore < neighbor.g) {
// Found an optimal (so far) path to this node. Take score for node to see how good it is.
neighbor.visited = true;
neighbor.parent = currentNode;
neighbor.h = neighbor.h || heuristic(neighbor, end);
neighbor.g = gScore;
neighbor.f = neighbor.g + neighbor.h;
graph.markDirty(neighbor);
if (closest) {
// If the neighbour is closer than the current closestNode or if it's equally close but has
// a cheaper path than the current closest node then it becomes the closest node
if (neighbor.h < closestNode.h || (neighbor.h === closestNode.h && neighbor.g < closestNode.g)) {
closestNode = neighbor;
}
}
if (!beenVisited) {
// Pushing to heap will put it in proper place based on the 'f' value.
openHeap.push(neighbor);
} else {
// Already seen the node, but since it has been rescored we need to reorder it in the heap
openHeap.rescoreElement(neighbor);
}
}
}
}
if (closest) {
return pathTo(closestNode);
}
// No result was found - empty array signifies failure to find path.
return [];
},
// See list of heuristics: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
heuristics: {
manhattan: function(pos0, pos1) {
var d1 = Math.abs(pos1.x - pos0.x);
var d2 = Math.abs(pos1.y - pos0.y);
return d1 + d2;
},
diagonal: function(pos0, pos1) {
var D = 1;
var D2 = Math.sqrt(2);
var d1 = Math.abs(pos1.x - pos0.x);
var d2 = Math.abs(pos1.y - pos0.y);
return (D * (d1 + d2)) + ((D2 - (2 * D)) * Math.min(d1, d2));
}
},
cleanNode: function(node) {
node.f = 0;
node.g = 0;
node.h = 0;
node.visited = false;
node.closed = false;
node.parent = null;
}
};
/**
* A graph memory structure
* @param {Array} gridIn 2D array of input weights
* @param {Object} [options]
* @param {bool} [options.diagonal] Specifies whether diagonal moves are allowed
*/
function Graph(gridIn, options) {
options = options || {};
this.nodes = [];
this.diagonal = !!options.diagonal;
this.grid = [];
for (var x = 0; x < gridIn.length; x++) {
this.grid[x] = [];
for (var y = 0, row = gridIn[x]; y < row.length; y++) {
var node = new GridNode(x, y, row[y]);
this.grid[x][y] = node;
this.nodes.push(node);
}
}
this.init();
}
Graph.prototype.init = function() {
this.dirtyNodes = [];
for (var i = 0; i < this.nodes.length; i++) {
astar.cleanNode(this.nodes[i]);
}
};
Graph.prototype.cleanDirty = function() {
for (var i = 0; i < this.dirtyNodes.length; i++) {
astar.cleanNode(this.dirtyNodes[i]);
}
this.dirtyNodes = [];
};
Graph.prototype.markDirty = function(node) {
this.dirtyNodes.push(node);
};
Graph.prototype.neighbors = function(node) {
var ret = [];
var x = node.x;
var y = node.y;
var grid = this.grid;
// West
if (grid[x - 1] && grid[x - 1][y]) {
ret.push(grid[x - 1][y]);
}
// East
if (grid[x + 1] && grid[x + 1][y]) {
ret.push(grid[x + 1][y]);
}
// South
if (grid[x] && grid[x][y - 1]) {
ret.push(grid[x][y - 1]);
}
// North
if (grid[x] && grid[x][y + 1]) {
ret.push(grid[x][y + 1]);
}
if (this.diagonal) {
// Southwest
if (grid[x - 1] && grid[x - 1][y - 1]) {
ret.push(grid[x - 1][y - 1]);
}
// Southeast
if (grid[x + 1] && grid[x + 1][y - 1]) {
ret.push(grid[x + 1][y - 1]);
}
// Northwest
if (grid[x - 1] && grid[x - 1][y + 1]) {
ret.push(grid[x - 1][y + 1]);
}
// Northeast
if (grid[x + 1] && grid[x + 1][y + 1]) {
ret.push(grid[x + 1][y + 1]);
}
}
return ret;
};
Graph.prototype.toString = function() {
var graphString = [];
var nodes = this.grid;
for (var x = 0; x < nodes.length; x++) {
var rowDebug = [];
var row = nodes[x];
for (var y = 0; y < row.length; y++) {
rowDebug.push(row[y].weight);
}
graphString.push(rowDebug.join(" "));
}
return graphString.join("n");
};
function GridNode(x, y, weight) {
this.x = x;
this.y = y;
this.weight = weight;
}
GridNode.prototype.toString = function() {
return "[" + this.x + " " + this.y + "]";
};
GridNode.prototype.getCost = function(fromNeighbor) {
// Take diagonal weight into consideration.
if (fromNeighbor && fromNeighbor.x != this.x && fromNeighbor.y != this.y) {
return this.weight * 1.41421;
}
return this.weight;
};
GridNode.prototype.isWall = function() {
return this.weight === 0;
};
function BinaryHeap(scoreFunction) {
this.content = [];
this.scoreFunction = scoreFunction;
}
BinaryHeap.prototype = {
push: function(element) {
// Add the new element to the end of the array.
this.content.push(element);
// Allow it to sink down.
this.sinkDown(this.content.length - 1);
},
pop: function() {
// Store the first element so we can return it later.
var result = this.content[0];
// Get the element at the end of the array.
var end = this.content.pop();
// If there are any elements left, put the end element at the
// start, and let it bubble up.
if (this.content.length > 0) {
this.content[0] = end;
this.bubbleUp(0);
}
return result;
},
remove: function(node) {
var i = this.content.indexOf(node);
// When it is found, the process seen in 'pop' is repeated
// to fill up the hole.
var end = this.content.pop();
if (i !== this.content.length - 1) {
this.content[i] = end;
if (this.scoreFunction(end) < this.scoreFunction(node)) {
this.sinkDown(i);
} else {
this.bubbleUp(i);
}
}
},
size: function() {
return this.content.length;
},
rescoreElement: function(node) {
this.sinkDown(this.content.indexOf(node));
},
sinkDown: function(n) {
// Fetch the element that has to be sunk.
var element = this.content[n];
// When at 0, an element can not sink any further.
while (n > 0) {
// Compute the parent element's index, and fetch it.
var parentN = ((n + 1) >> 1) - 1;
var parent = this.content[parentN];
// Swap the elements if the parent is greater.
if (this.scoreFunction(element) < this.scoreFunction(parent)) {
this.content[parentN] = element;
this.content[n] = parent;
// Update 'n' to continue at the new position.
n = parentN;
}
// Found a parent that is less, no need to sink any further.
else {
break;
}
}
},
bubbleUp: function(n) {
// Look up the target element and its score.
var length = this.content.length;
var element = this.content[n];
var elemScore = this.scoreFunction(element);
while (true) {
// Compute the indices of the child elements.
var child2N = (n + 1) << 1;
var child1N = child2N - 1;
// This is used to store the new position of the element, if any.
var swap = null;
var child1Score;
// If the first child exists (is inside the array)...
if (child1N < length) {
// Look it up and compute its score.
var child1 = this.content[child1N];
child1Score = this.scoreFunction(child1);
// If the score is less than our element's, we need to swap.
if (child1Score < elemScore) {
swap = child1N;
}
}
// Do the same checks for the other child.
if (child2N < length) {
var child2 = this.content[child2N];
var child2Score = this.scoreFunction(child2);
if (child2Score < (swap === null ? elemScore : child1Score)) {
swap = child2N;
}
}
// If the element needs to be moved, swap it, and continue.
if (swap !== null) {
this.content[n] = this.content[swap];
this.content[swap] = element;
n = swap;
}
// Otherwise, we are done.
else {
break;
}
}
}
};
return {
astar: astar,
Graph: Graph
};
});
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team