NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

In response to everyone who is claiming that solar is a viable energy source, and using Germany as an example, let's examine one of Germany's largest solar power facilities, the Neuhardengberg solar plant outside of Berlin; 145 MW nominal capacity 245 hectares (0.95 square miles). First the nominal power sited of 145 mW is the "watt-peak", which is energy production under ideal conditions. To use Wikipedia: "The maximum power measured is the nominal power of the module in "Wp". The nominal power divided by the light power that falls on the module (area x 1000 W/m2) is the efficiency. Watts peak is a convenient measure because it enables one to compare one module with another and track industry capacities and shipments. Equivalent measures can be used for wind electricity generators, though obviously the specification of ideal conditions is different."

The facility in question is a PV facility generating DC. Homes and appliances have to be run on AC. This necessitates running the DC through a converter. Converters transform AC into DC and vice versa. There are two types of converters—rectifiers and inverters. Rectifiers use diodes in various configurations to perform the conversion. The more complicated inverters rely on microprocessor circuits and transistors.

DC is converted to AC by means of an inverter. The output waveform (voltage over time) varies with the quality and cost of the inverter from rectangular (poorest quality and least cost) or trapezoidal (better quality and more cost) to a true sine wave identical to that directly produced by an AC generator (best quality and most expensive). Inverters can be connected either in parallel for higher power or in series for higher voltage. The operating power of an inverter varies with voltage; typically a 100-W inverter will operate at 12–48 V.

Which then brings to the issue of operational efficiency. An inverter's efficiency may vary from something just over 50% when a trickle of power is being used, to something over 90% when the output is approaching the inverters rated output. An inverter will use some power from your batteries even when you are not drawing any AC power from it. This results in the low efficiencies at low power levels.

Typical inverter efficiency will be around 60% on most days, and each day will see variable DC output due to variable sunshine (more on that below). So that 145 nominal mW becomes an average, typical DC to AC inverted power production of 87 mW.

Even on bright sunny days, the average solar power gain is considerably less than the peak used to determine nominal power in watts-peak (due to movement of the sun, latitude, season, etc.). For example, from David MacKay's analysis in "Sustainable Energy without all the Hot Air":

"The power of raw sunshine at midday on a cloudless day is 1000 W per square metre. That’s 1000 W per m2 of area oriented towards the sun, not per m2 of land area. To get the power per m2 of land area in Britain, we must make several corrections. We need to compensate for the tilt between the sun and the land, which reduces the intensity of midday sun to about 60% of its value at the equator (figure 6.1). We also lose out because it is not midday all the time. On a cloud-free day in March or September, the ratio of the average intensity to the midday intensity is about 32%. Finally, we lose power because of cloud cover. In a typical UK location the sun shines during just 34% of daylight hours. The combined effect of these three factors and the additional complication of the wobble of the seasons is that the average raw power of sunshine per square metre of south-facing roof in Britain is roughly 110 W/m2 and the average raw power of sunshine per square metre of flat ground is roughly 100 W/m2.” For compariosn, nearby Berlin has an average of 1625 hours of sunshine annually. With annual daylight of 365 x 12 = 4,380 hours, this is equivalent to 37%. This is roughly equal to that of England with 34%

So let’s take the 87 mW of inverted AC production and reduce it to 32% to account for average solar intensity. This reduces actual output to 28 mW. Then again reduce this amount to 32% to account for cloudy days (for the climate and latitude of northern Germany). This gives us an amount of 9.5 mW.

So after accounting for reductions for DC to AC conversion, latitude and climate, the facility’s actual POWER production is only 6.5% of its rated nominal power in Watts-peak under ideal conditions. If this facility’s average AC output was to be equal to it nominal 145 Mw it would need a land area almost 16 times greater than 0.95 square miles, an area equal to almost 15 square miles.

Note that daylight hours only account for half of a 24 hour day on average, resulting in a further 50% reduction in ENERGY production as measured in kW-hours. So increase the area required by a factor of 2 to 30 square miles.

But since energy created by the PV system will still be needed at night (indeed its heaviest demand load will be at night for heating and illumination) it will need to produce enough energy to store for later use at night. With a typical charger efficiency and battery efficiency of 80% and 70%, the overall energy storage efficiency comes to 56% under ideal conditions. To account for energy storage inefficiency the required land area has to double again to 60 square miles – about 38,400 acres.

Now a typical natural gas power plant produces 10s to 100s of mW, 24 hours a day, irrespective of climate or location, and without the need to store power. For example, the proposed Apex Matagorda Energy Center natural gas power plant will have a capacity of 317 mW and a 22 acre footprint (see http://www.mcedc.net/news.php?.... That’s twice the capacity of the German PV facility, or half the equivalent area per power output of only 11 acres.

To produce the same amount of energy as an equivalent natural gas power plant, a PV solar array would require a footprint 3,000 to 4,000 times greater in extent.

The destroyed habitat alone makes solar a bad environmental choice. The PV cells themselves are doped with toxic materials. Until recently, PV meant flat-panel cells and modules. While this allows for some saving in production costs due to inexpensive roll-to-roll fabrication, the material costs are much higher, since almost the entire cell needs to be lined with doped silicon. The doping often involves the introduction of relatively expensive materials, such as gallium arsenide or indium selenide.

PC cells do not last forever. Current warranties run for about 10to 20 years of operation, after which they have to be disposed of and replaced. A complete conversion to PV energy sources would present us with a serious toxic waste disposal problem.

No matter how you look at it, habitat destroying footprint, toxic pollutants, need for additional infrastructure, etc. - methane is better for the environment than PV. Solar energy is a pipe dream. We simply cannot run a modern industrial civilization on renewables. The numbers just don’t add up.

To summarize, in order to effectively produce power equivalent to the nominal 145 kW, the area devoted to collectors has to be increased to compensate for losses incurred by:

a. conversion from DC to AC (60%)
b. latitude (32%)
c. cloud cover (34%)
d. only operating during daylight (50%)
e. battery storage (56%)

This is a total reduction of about 98%, necessitating a 55x increase in collector surface area to produce power equiavlent to its nominal rating. In this case about 55 to 60 square miles instead of the actual 0.95 square miles.

Furthermore, the average European uses 0.688 kW of energy (Americans use 1.363). So the 145 kW facility covering 55 to 60 square miles provides enough electricity for 210 Europeans (approximately 50 households). Germany has a population density of 609 people per square mile. So tell me why this makes any kind of sense, either environmentally or economically.

And for a nice summary of the adverse ecological impacts of Germany's renewable energy program, see this article from Der Spiegel:

http://www.spiegel.de/internat...

It was in this way that, in 2009, Germany's largest solar park to date arose right in the middle of the Lieberoser Heide, a bird sanctuary about a 100 kilometers (62 miles) southeast of Berlin. Since German reunification in 1990, more than 200 endangered species have settled in the former military training grounds. But that didn't seem to matter. In spite of all the protests by environmentalists, huge areas of ancient pine trees were clear cut in order to make room for solar collectors bigger than soccer fields. A similar thing happened in Baden-Württemberg, even though the southwestern state has been led for almost two years by Winfried Kretschmann, the first state governor in Germany belonging to the Green Party. In 2012, it was the Greens there who passed a wind-energy decree that aims to boost the number of wind turbines in the state from 400 to roughly 2,500 by 2020. And in the party's reckoning, nature is standing in the way.
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.