NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

PROGRAM 1:
import csv
def read_data(filename):
with open(filename,'r') as csvfile:
datareader=csv.reader(csvfile,delimiter=',')
traindata=[]
for row in datareader:
traindata.append(row)
return(traindata)
def findS():
dataarr=read_data('data.csv')
'''print(dataarr)'''
h=dataarr[0]
rows=len(dataarr)
columns=7
for x in range(1,rows):
t=dataarr[x]
if t[columns-1]=='0':
pass
elif t[columns-1]=='1':
for y in range (columns):
if h[y]==t[y]:
pass
else:
h[y]='?'
print("maximally specific set hypothesis is:")
print('<',end='')
for i in range(0,len(h)-1):
print(h[i],end=',')
print('>')
findS()

PROGRAM 4:
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0)
def sigmoid (x):
return (1/(1 + np.exp(-x)))
def derivatives_sigmoid(x):
return x * (1 - x)
epoch=7000
lr=0.1
inputlayer_neurons = 2
hiddenlayer_neurons = 3
output_neurons = 1
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
for i in range(epoch):
hinp1=np.dot(X,wh)
hinp=hinp1 + bh
hlayer_act = sigmoid(hinp)
outinp1=np.dot(hlayer_act,wout)
outinp= outinp1+ bout
output = sigmoid(outinp)
EO = y-output
outgrad = derivatives_sigmoid(output)
d_output = EO* outgrad
EH = d_output.dot(wout.T)
hiddengrad = derivatives_sigmoid(hlayer_act)
d_hiddenlayer = EH * hiddengrad
wout += hlayer_act.T.dot(d_output) *lr
bout += np.sum(d_output, axis=0,keepdims=True) *lr
wh += X.T.dot(d_hiddenlayer) *lr
print("Input: n" + str(X))
print("Actual Output: n" + str(y))
print("Predicted Output: n" ,output)


PROGRAM 5:
import csv
import random
import math
def loadcsv(filename):
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute))
for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean,stdev)
return probabilities
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == predictions[i]:
correct += 1
return (correct/float(len(testSet))) * 100.0
def main():
filename = 'C:\Users\MCA\Desktop\pima-indians-diabetes.csv'
splitRatio = 0.67
dataset = loadcsv(filename)
print("n The length of the Data Set : ",len(dataset))
print("n The Data Set Splitting into Training and Testing n")
trainingSet, testSet = splitDataset(dataset, splitRatio)
print('n Number of Rows in Training Set:{0}
rows'.format(len(trainingSet)))
print('n Number of Rows in Testing Set:{0}
rows'.format(len(testSet)))
print("n First Five Rows of Training Set:n")
for i in range(0,5):
print(trainingSet[i],"n")
print("n First Five Rows of Testing Set:n")
for i in range(0,5):
print(testSet[i],"n")
summaries = summarizeByClass(trainingSet)
print("n Model Summaries:n",summaries)
predictions = getPredictions(summaries, testSet)
print("nPredictions:n",predictions)
accuracy = getAccuracy(testSet, predictions)
print('n Accuracy: {0}%'.format(accuracy))
main()


PROGRAM 6:
import pandas as pd
msg=pd.read_csv('naivetext1.csv',names=['message','label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum
print(X)
print(y)
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y)
print(xtest.shape)
print(xtrain.shape)
print(ytest.shape)
print(ytrain.shape)
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
xtrain_dtm = count_vect.fit_transform(xtrain)
xtest_dtm=count_vect.transform(xtest)
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(xtrain_dtm,ytrain)
predicted = clf.predict(xtest_dtm)
from sklearn import metrics
print('Accuracy metrics')
print('Accuracy of the classifer
is',metrics.accuracy_score(ytest,predicted))
print('Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('Recall and Precison ')
print(metrics.recall_score(ytest,predicted))
print(metrics.precision_score(ytest,predicted))
6th program.txt
Displaying 5th program.txt.


PROGRAM 7:
from pomegranate import*
asia = DiscreteDistribution ({'True':0.5,'False':0.5})
tuberculosis=ConditionalProbabilityTable(
[['True', 'True', 0.2],
['True', 'False', 0.8],
['False', 'True', 0.01],
['False', 'False', 0.98]], [asia])
smoking = DiscreteDistribution({ 'True':0.5, 'False':0.5 })
lung = ConditionalProbabilityTable(
[[ 'True', 'True', 0.75],
['True', 'False',0.25],
[ 'False', 'True', 0.02],
[ 'False', 'False', 0.98]], [smoking])
bronchitis = ConditionalProbabilityTable(
[[ 'True', 'True', 0.92],
['True', 'False',0.08],
[ 'False', 'True',0.03],
[ 'False', 'False', 0.98]], [smoking])
tuberculosis_or_cancer = ConditionalProbabilityTable( [[ 'True', 'True',
'True', 1.0], ['True', 'True', 'False', 0.0],
['True', 'False', 'True', 1.0],
['True', 'False', 'False', 0.0],
['False', 'True', 'True', 1.0],
['False', 'True', 'False', 0.0],
['False', 'False' 'True', 1.0],
['False', 'False', 'False', 0.0]], [tuberculosis, lung])
Xray = ConditionalProbabilityTable( [[ 'True', 'True', 0.885], ['True',
'False', 0.115],
[ 'False', 'True', 0.04], [ 'False', 'False', 0.96]],
[tuberculosis_or_cancer])
dyspnea = ConditionalProbabilityTable( [[ 'True', 'True', 'True', 0.96],
['True', 'True', 'False', 0.04], ['True', 'False', 'True', 0.89],
['True', 'False', 'False', 0.11], ['False', 'True', 'True', 0.96],
['False', 'True', 'False', 0.04], ['False', 'False' ,'True', 0.89],
['False', 'False', 'False', 0.11 ]], [tuberculosis_or_cancer, bronchitis])
s0 = State(asia, name="asia")
s1 = State(tuberculosis, name="tuberculosis")
s2 = State(smoking, name="smoker")
network = BayesianNetwork("asia")
network.add_nodes(s0,s1,s2)
network.add_edge(s0,s1)
network.add_edge(s1,s2)
network.bake()
print(network.predict_proba({'tuberculosis': 'True'}))



PROGRAM 8:
from sklearn.cluster import KMeans
from sklearn import preprocessing
from sklearn.mixture import GaussianMixture
from sklearn.datasets import load_iris
import sklearn.metrics as sm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset=load_iris()
X=pd.DataFrame(dataset.data)
X.columns=['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
y=pd.DataFrame(dataset.target)
y.columns=['Targets']
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
plt.subplot(1,3,1)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y.Targets],s=40)
plt.title('Real')
plt.subplot(1,3,2)
model=KMeans(n_clusters=3).fit(X)
predY=np.choose(model.labels_,[0,1,2]).astype(np.int64)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[predY],s=40)
plt.title('KMeans')
scaler=preprocessing.StandardScaler().fit(X)
gmm=GaussianMixture(n_components=3).fit(X)
y_cluster_gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm],s=40)
plt.title('GMM Classification')
sm.accuracy_score(y, predY)
sm.confusion_matrix(y,predY)


PROGRAM 9:
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
import pandas as pd
import numpy as np
iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
#print(iris_data)
#print(iris_labels)
x_train,x_test,y_train,y_test=train_test_split(iris_data,iris_labels)
classifier=KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train,y_train)
y_pred=classifier.predict(x_test)
print('Confusion matrix is as follows')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))


PROGRAM 10:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
%matplotlib inline
boston=load_boston()
features=pd.DataFrame(boston.data,columns=boston.feature_names)
target=pd.DataFrame(boston.target,columns=['target'])
data=pd.concat([features,target],axis=1)
data.head(10)
x=data["RM"]
y=data["target"]
X=np.array(x/x.mean())
Y=np.array(y/y.mean())
n=int(0.5*len(X))
x_train=X[:n]
y_train=Y[:n]
x_test=X[n:]
y_test=Y[n:]
len(y_test)
plt.plot(x_train,y_train,'r.')
def h(x,a,b):
return a*x+b
def error(a,x,b,y):
e=0
m=len(x)
for i in range(m):
e+=np.power(h(x[i],a,b)-y[i],2)
return (1/(2*m))*e
def step_gradient(a,x,b,y,learning_rate):
grad_a=0
grad_b=0
m=len(x)
for i in range(m):
grad_a+=(2/m)*((h(x[i],a,b)-y[i])*x[i])
grad_b+=(2/m)*(h(x[i],a,b)-y[i])
a=a-(grad_a*learning_rate)
b=b-(grad_b*learning_rate)
return a,b
def descent(initial_a,initial_b,x,y,learning_rate,iterations):
a=initial_a
b=initial_b
for i in range(iterations):
e=error(a,x,b,y)
if i%1000==0:
print(f"{e}---a:{a}, b:{b}")
a,b=step_gradient(a,x,b,y,learning_rate)
return a,b
a=0
b=1

ia=2.4042710103368203
ib=-1.348320315336314
learning_rate=0.01
iterations=10000
final_a,final_b=descent(a,b,x_train,y_train,learning_rate,iterations)
plt.plot(x_train,y_train,'r.',x_train,h(x_train,final_a,final_b),'b',)
print(error(a,x_test,b,y_test))
print(error(final_a,x_test,final_b,y_test))
plt.plot(x_test,y_test,'r.',x_train,y_train,'b.')
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.